Skip to main content
Log in

Some Results for Range of Random Walk on Graph with Spectral Dimension Two

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider the range of the simple random walk on graphs with spectral dimension two. We give a form of strong law of large numbers under a certain uniform condition, which is satisfied by not only the square integer lattice but also a class of fractal graphs. Our results imply the strong law of large numbers on the square integer lattice established by Dvoretzky and Erdös (in: Proceedings of Second Berkeley symposium on mathematical statistics and probability, University of California Press, California, 1951). Our proof does not depend on spatial homogeneity of space and gives a new proof of the strong law of large numbers on the lattice. We also show that the behavior of appropriately scaled expectations of the range is stable with respect to every “finite modification” of the two-dimensional integer lattice, and furthermore, we construct a recurrent graph such that the uniform condition holds, but the scaled expectations fluctuate. As an application, we establish a form of law of the iterated logarithms for lamplighter random walks in the case that the spectral dimension of the underlying graph is two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. To the best of our knowledge, there is no unified definition of strongly recurrence. Notions of (very) strongly recurrent graphs are introduced in [2, 44]. Their definitions are different from each other, and clearly different from the definition of null recurrence (i.e., the expectation for the first return time to the starting point is infinite. See [45] for details.) for Markov chains.

References

  1. Alexander, S., Orbach, R.: Density of states on fractals: “fractons”. J. Phys. (Paris) Lett. 43, 625–631 (1982)

    Article  Google Scholar 

  2. Barlow, M.T.: Which values of the volume growth and escape time exponent are possible for a graph? Rev. Mat. Iberoamericana 20(1), 1–31 (2004)

    Article  MathSciNet  Google Scholar 

  3. Barlow, M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32(4), 3024–3084 (2004)

    Article  MathSciNet  Google Scholar 

  4. Barlow, M.T.: Random Walks and Heat Kernels on Graphs. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  5. Barlow, M.T., Bass, R.F.: Brownian motion and harmonic analysis on Sierpinski carpets. Can. J. Math. 51, 673–744 (1999)

    Article  MathSciNet  Google Scholar 

  6. Barlow, M.T., Bass, R.F.: Stability of parabolic Harnack inequalities. Trans. Am. Math. Soc. 356(4), 1501–1533 (2004)

    Article  MathSciNet  Google Scholar 

  7. Barlow, M.T., Járai, A.A., Kumagai, T., Slade, G.: Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Commun. Math. Phys. 278, 385–431 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bass, R. F., Chen, X., Rosen, J.: Moderate deviations for the range of planar random walks. Mem. Am. Math. Soc. 198(929), viii+82 pp (2009)

  9. Bass, R.F., Kumagai, T.: Laws of the iterated logarithm for the range of random walks in two and three dimensions. Ann. Probab. 30, 1369–1396 (2002)

    Article  MathSciNet  Google Scholar 

  10. Bass, R.F., Rosen, J.: An almost sure invariance principle for the range of planar random walks. Ann. Probab. 33, 1856–1885 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Benjamini, I., Izkovsky, R., Kesten, H.: On the range of the simple random walk bridge on groups. Electron. J. Probab. 12(20), 591–612 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Diestel, R.: Graph Theory, 4th edn. Springer, New York (2010)

    Book  Google Scholar 

  13. Donsker, M.D., Varadhan, S.R.S.: On the number of distinct sites visited by a random walk. Commun. Pure. Appl. Math. 32, 721–747 (1979)

    Article  MathSciNet  Google Scholar 

  14. Duffin, R.J.: Potential theory on a rhombic lattice. J. Combin. Theory 5, 258–272 (1968)

    Article  MathSciNet  Google Scholar 

  15. Dvoretzky, A., Erdös, P.: Some problems on random walk in space. In: Proc. Second Berkeley Symp. on Math. Stat. and Prob., pp. 353–368. Univ. of California Press, California (1951)

  16. Gibson, L.R.: The mass of sites visited by a random walk on an infinite graph. Electron. J. Probab. 13(44), 1257–1282 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Grigorýan, A., Telcs, A.: Harnack inequalities and sub-Gaussian estimates for random walks. Math. Ann. 324(3), 521–556 (2002)

    Article  MathSciNet  Google Scholar 

  18. Hamana, Y.: An almost sure invariance principle for the range of random walks. Stoch. Process Appl. 78, 131–143 (1998)

    Article  MathSciNet  Google Scholar 

  19. Hamana, Y.: Asymptotics of the moment generating function for the range of random walks. J. Theoret. Probab. 14, 189–197 (2001)

    Article  MathSciNet  Google Scholar 

  20. Hamana, Y., Kesten, H.: A large-deviation result for the range of random walk and for the Wiener sausage. Probab. Theory Related Fields 120, 183–208 (2001)

    Article  MathSciNet  Google Scholar 

  21. Hamana, Y., Kesten, H.: Large deviations for the range of an integer-valued random walk. Ann. Inst. H. Poincaré Probab. Statist. 38, 17–58 (2002)

    Article  MathSciNet  Google Scholar 

  22. Hebisch, W., Saloff-Coste, L.: Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21(2), 673–709 (1993)

    Article  MathSciNet  Google Scholar 

  23. Heydenreich, M., van der Hofstad, R., Hulshof, T.: Random walk on the high-dimensional IIC. Commun. Math. Phys. 329, 57–115 (2014)

    Article  MathSciNet  Google Scholar 

  24. Jain, N.C., Orey, S.: On the range of random walk. Israel J. Math. 6, 373–380 (1968)

    Article  MathSciNet  Google Scholar 

  25. Jain, N.C., Pruitt, W.E.: The range of recurrent random walk in the plane. Z. Wahrsch. Verw. Gebiate 16, 279–292 (1970)

    Article  MathSciNet  Google Scholar 

  26. Jain, N.C., Pruitt, W.E.: The range of transient random walk. J. Anal. Math. 24, 369–393 (1971)

    Article  MathSciNet  Google Scholar 

  27. Jain, N.C., Pruitt, W.E.: The law of the iterated logarithm for the range of random walk. Ann. Math. Statist. 43, 1692–1697 (1972)

    Article  MathSciNet  Google Scholar 

  28. Jain, N.C., Pruitt, W.E.: The range of random walk. In: Proc. Sixth Berkeley Symp. Math. Statis. Probab. vol. 3, pp. 31–50. Univ, California Press, Berkeley (1972)

  29. Jain, N.C., Pruitt, W.E.: Further limit theorems for the range of random walk. J. Anal. Math. 27, 94–117 (1974)

    Article  MathSciNet  Google Scholar 

  30. Kenyon, R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150, 409–439 (2002)

    Article  MathSciNet  Google Scholar 

  31. Kenyon, R., Schlenker, J.-M.: Rhombic embeddings of planar quad-graphs. Trans. Am. Math. Soc. 357, 3443–3458 (2004)

    Article  MathSciNet  Google Scholar 

  32. Kozma, G., Nachmias, A.: The Alexander-Orbach conjecture holds in high dimensions. Invent. Math. 178(3), 635–654 (2009)

    Article  MathSciNet  Google Scholar 

  33. Kumagai, T.: Random Walks on Disordered Media and their Scaling Limits. École d’Été de Probabilités de Saint-Flour. Springer, Cham (2014)

    Book  Google Scholar 

  34. Kumagai, T., Misumi, J.: Heat kernel estimates for strongly recurrent random walk on random media. J. Theoret. Probab. 21(4), 910–935 (2008)

    Article  MathSciNet  Google Scholar 

  35. Kumagai, T., Nakamura, C.: Lamplighter random walks on fractals. J. Theoret. Probab. 31, 68–92 (2018)

    Article  MathSciNet  Google Scholar 

  36. Le Gall, J.-F.: Propriété d’intersection des marches aléatoirs, I. Convergence vers le temps local d’intersection, Commun. Math. Phys.

  37. Le Gall, J.-F., Rosen, J.: The range of stable random walks. Ann. Probab. 19(2), 650–705 (1991)

    Article  MathSciNet  Google Scholar 

  38. Liu, J., Vogel, Q.: Large deviations of the range of the planar random walk on the scale of the mean, preprint arXiv:1903.07212

  39. Murugan, M.: Quasisymmetric uniformization and heat kernel estimates. Trans. Am. Math. Soc. 372, 4177–4209 (2019)

    Article  MathSciNet  Google Scholar 

  40. Okamura, K.: On the range of random walk on graphs satisfying a uniform condition, ALEA Lat. Am. J. Probab. Math. Stat. 11(1), 341–357 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Okamura, K.: Long time behavior of the volume of the Wiener sausage on Dirichlet spaces. Potential Anal. 52, 427–468 (2020)

    Article  MathSciNet  Google Scholar 

  42. Rau, C.: Sur le nombre de points visités par une marche aléatoire sur un amas infini de percolation. Bulletin de la Société Mathématique de France, Tome 135, 135–169 (2007)

    Article  Google Scholar 

  43. Spitzer, F.: Principles of Random Walk, 2nd edn. Springer, New York (1976)

    Book  Google Scholar 

  44. Telcs, A.: Local sub-Gaussian estimates on graphs: the strongly recurrent case. Electron. J. Probab. 6(22), 33 (2001)

    MathSciNet  Google Scholar 

  45. Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

Download references

Acknowledgements

The author appreciates the referee for comments and suggestions. He also wishes to give his thanks to Takashi Kumagai for notifying him of the application to the lamplighter random walk as in [35] and comments on this topic. This work was supported by JSPS KAKENHI 16J04213, 18H05830, 19K14549 and by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Okamura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Intersection of Two Independent Random Walks on Graph

Appendix A. Intersection of Two Independent Random Walks on Graph

In this section, we consider intersections of two independent random walks starting at a common point. This case is relatively easier to handle than Sect. 3, but on the other hand the arguments in this section are similar to Sect. 3.

Proposition A.1

Let \(S^{(1)}\) and \(S^{(2)}\) be two independent simple random walks on G. Let \(P^{x,y}\) be the joint law of \(S^{(1)}\) and \(S^{(2)}\) whose starting points are x and y, respectively. Then, there exists a positive constant C such that for every \(\epsilon > 0\) and every \(x \in V(G)\),

$$\begin{aligned} P^{x,x}\left( \left| \{S^{(1)}_0, \dots , S^{(1)}_n\} \cap \{S^{(2)}_0, \dots , S^{(2)}_n\} \right| \ge \frac{\epsilon n}{\log n}\right) \le \frac{C (\log \log n)^2}{\epsilon ^2 (\log n)^{2}} \end{aligned}$$

As in [36], the estimate in Proposition A.1 is attributed to obtaining an upper bound for the expectation of the intersection.

Proposition A.2

There exists a positive constant C such that for every \(x \in V(G)\) and \(n \ge 2\),

$$\begin{aligned} E^{x,x}\left[ \left| \{S^{(1)}_0, \dots , S^{(1)}_n\} \cap \{S^{(2)}_0, \dots , S^{(2)}_n\} \right| \right] \le \frac{C n \log \log n}{(\log n)^2}\end{aligned}$$

For the case that \(G = {\mathbb {Z}}^2\), we have a better estimate (see [36, Theorem 5.1]). We conjecture that \(\log \log n\) in the numerator of the right-hand side of the above inequality could be replaced with 1. We use estimates for hitting time distributions on graphs (cf. [4]).

Proof

By (1.3) and Lemma 3.3, we have that

$$\begin{aligned}&E^{x,x}\left[ \left| \{S^{(1)}_0, \dots , S^{(1)}_n\} \cap \{S^{(2)}_0, \dots , S^{(2)}_n\} \right| \right] = \sum _{y} P^x (T_y \le n)^2 \\&\quad \le \left| B\left( x, \left( \frac{n}{(\log n)^2}\right) ^{1/d}\right) \right| + \sup _{y \notin B(x, (\frac{n}{(\log n)^2})^{1/d})} P^x (T_y \le n) \sum _{y} P^x (T_y \le n)\\&\quad = O\left( \frac{n}{(\log n)^2}\right) + O\left( \frac{\log \log n}{\log n}\right) E^x [R_n]. \end{aligned}$$

By this and (3.3), we have the assertion. \(\square \)

The following lemma is related with the moment method.

Lemma 7.13

For every \(p \in {\mathbb {N}}\),

$$\begin{aligned}&\sup _{x \in V(G)} E^{x,x} \left[ \left| \{S^{(1)}_0, \dots , S^{(1)}_n\} \cap \{S^{(2)}_0, \dots , S^{(2)}_n\} \right| ^p \right] \\&\quad \le (p!)^2 \left( \sup _{x \in V(G)} E^{x,x} \left[ \left| \{S^{(1)}_0, \dots , S^{(1)}_n\} \cap \{S^{(2)}_0, \dots , S^{(2)}_n\} \right| \right] \right) ^p. \end{aligned}$$

Theorem A.1 easily follows from Proposition A.2 and Lemma 7.13. The proof of Lemma 7.13 is same as in the proof of [37, Lemma 3.1], so we omit the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamura, K. Some Results for Range of Random Walk on Graph with Spectral Dimension Two. J Theor Probab 34, 1653–1688 (2021). https://doi.org/10.1007/s10959-020-01013-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-020-01013-0

Keywords

Mathematics Subject Classification (2010)

Navigation