1 Banach Random Walk in a Banach space

Construction of the Banach Random Walk in a Banach space was given in [3], so we present here only a brief description of this process.

Let \(\left( \mathbb {B},\left\| \cdot \right\| \right) \) be an infinite-dimensional Banach space with a Schauder basis \(\left\{ b_{n},n\ge 1\right\} \) and let \(\{\pi _{n}, n\ge 0\}\) be a sequence of projections \(\pi _{n}:\mathbb {B}\rightarrow \mathbb {B},\) given by \(\pi _0 (x) \equiv 0\in \mathbb {B}\) and \(\pi _{n}\left( x\right) =\sum _{k=1}^{n}x_{k}b_{k}\) for \(x =\sum _{k=1}^{\infty }x_{k}b_{k}\in \mathbb {B}\), \(n\ge 1\). Denote

$$\begin{aligned} B=\left\{ x\in \mathbb {B}:\left\| x\right\| \le 1\right\} ,\quad B_{n}\left( 0,r\right) =\left\{ \pi _{n}\left( x\right) \in \mathbb {B}:\left\| \pi _{n}\left( x\right) \right\| \le r\right\} ,\quad n,r \ge 0 , \end{aligned}$$

and for \(\pi _{n-1}\left( x\right) \in B_{n-1}=B_{n-1}\left( 0,1\right) \), where \(n\ge 1\), put

$$\begin{aligned} \alpha _{n}= & {} \inf \left\{ t\in \mathbb {R}:\left\| \pi _{n-1}\left( x\right) +t b_{n}\right\| \le 1\right\} =\alpha _{n}(\pi _{n-1}\left( x\right) ),\\ \beta _{n}= & {} \sup \left\{ t\in \mathbb {R}:\left\| \pi _{n-1}\left( x\right) +tb_{n}\right\| \le 1\right\} =\beta _{n}(\pi _{n-1}\left( x\right) ). \end{aligned}$$

Without loss of generality we assume that \(\left\| b_{1}\right\| =1\), but we do not require that \(\left\| b_{n}\right\| =1\) for all \(n\ge 2\). Obviously \(\beta _{1}=-\alpha _{1}\), and in addition \(\alpha _{1}=-1\) and \(\beta _{1}=1\) whenever \(\left\| b_{1}\right\| =1\), but in general \(\beta _{n}\ne -\alpha _{n}\) for \(n \ge 2\). Therefore we introduce the following notion: the Schauder basis \(\left\{ b_{n},n\ge 1\right\} \) is called quasi-orthogonal, if \(\alpha _{n+1}=-\beta _{n+1}\) for all \(n\ge 1\). Under the above assumption \(\left[ \alpha _{n},\beta _{n}\right] \), \(n\ge 1\), are bounded intervals in \(\mathbb {R}\) with center zero, but in some situations they are reduced to the single point \([0,0]=\{0\}\).

Let \(\{G_{n}, n\ge 1\}\) be arbitrary probability distributions satisfying condition \(G_{n}\left( \left[ -1,1\right] \right) =1\) for all \(n\ge 1\). Define inductively on a probability space \(\left( \Omega , \mathcal {F},P\right) \) a sequence of dependent real-valued r.v.’s \(\left\{ X_{n},n\ge 1\right\} \) and, associated with \(\left\{ X_{n},n\ge 1\right\} \), \(\mathbb {B}\)-valued random elements (r.e.’s) \(\left\{ Z_{n},n\ge 1\right\} \) as follows: let \(X_{1}\) be a r.v. with distribution \(G_{1}\) and let \(Z_{1}=X_{1}b_{1};\) then \(X_{1}\left( \omega \right) \in \left[ \alpha _{1},\beta _{1}\right] =\left[ -1,1\right] \), i.e., \(Z_{1}(\omega ) \in B_1 \) a.s., and thus we evaluate \(\beta _2 (Z_{1}(\omega ))\), define \(X_{2}\) as a r.v. distributed according to the scaled probability measure

$$\begin{aligned} G_{2}\left( \cdot / \beta _{2}\left( X_{1}\left( \omega \right) b_{1}\right) \right) = G_{2}\left( \cdot / \beta _{2}\left( Z_{1}\left( \omega \right) \right) \right) , \end{aligned}$$

whenever \(\beta _{2}\left( Z_{1}\left( \omega \right) \right) >0\), and put \(Z_{2}=X_{1}b_{1}+X_{2}b_{2}\). More generally, if r.v.’s \(X_{1},\ldots ,X_{n-1}\) and \(Z_{1},\ldots ,Z_{n-1}\) are already defined in such a manner that \(Z_{n-1}\left( \omega \right) \in B_{n-1}\) a.s., then \( X_{n}\) is a r.v. with distribution

$$\begin{aligned} G_{n}\left( \cdot / \beta _{n}\left( X_{1}\left( \omega \right) b_{1} + \cdots + X_{n-1}\left( \omega \right) b_{n-1} \right) \right) = G_{n}\left( \cdot / \beta _{n}\left( Z_{n-1}\left( \omega \right) \right) \right) , \end{aligned}$$

provided \(\beta _{n}\left( Z_{n-1}\left( \omega \right) \right) >0\), and \(Z_{n}=X_{1}b_{1}+X_{2}b_{2}+\cdots +X_{n}b_{n}.\) As was already mentioned, it may happen that for some \(n\ge 1\) and \(Z_{n}\left( \omega \right) \in B_{n}\) the interval \(\left[ \alpha _{n+1},\beta _{n+1}\right] = \left[ \alpha _{n+1}\left( Z_{n}\left( \omega \right) \right) ,\beta _{n+1}\left( Z_{n}\left( \omega \right) \right) \right] \) reduces to the one-point set \(\left\{ 0\right\} \); in such a case we assume that the measure \( G_{n+1}\) is transformed so that it assigns the unit mass to the single point 0. Then \(Z_{n+1}(\omega ) = Z_n (\omega )\), but the next random interval \([\alpha _{n+2},\beta _{n+2} ] = [\alpha _{n+2}\left( Z_{n+1}(\omega )\right) ,\beta _{n+2}\left( Z_{n+1}(\omega )\right) ]\), defined by means of the successive basic vector \(b_{n+2}\), need not be equal to \(\{0\}\), and thus the process is still continued.

According to the definition introduced in [3] the sequence of \(\mathbb {B}\)-valued r.e.’s \(\left\{ Z_{n},n\ge 1\right\} \) obtained in this way is called Banach Random Walk (BRW) in the Banach space \(\mathbb {B}\).

Construction of the Banach Random Walk in an infinite-dimensional separable Hilbert space \(\mathbb {H}\) was motivated by Banach’s paper [1], where the so-called \(\mathfrak {L}\)-integral (i.e., integral of Lebesgue type) in abstract spaces was described. Namely, Banek [2] observed that a purely deterministic Banach’s [1] construction of the \(\mathfrak {L}\)-integral in \(\mathbb {H}\) is closely related to the asymptotic properties of the Banach Random Walk in \(\mathbb {H}\), and in fact the mentioned integral is equal to the limit of expectations of certain functionals acting on the Banach Random Walk. The main idea of Banach’s [1] approach which led to the definition of his \(\mathfrak {L}\)-integral was the symmetry of mappings as well as the symmetry of considered measures in \(\mathbb {R}^{n}\), \(n\ge 1\), and such a concept together with the Hahn–Banach theorem enabled him to prove the existence of the \(\mathfrak {L}\)-integral functional. Thus it is natural to demand that probability distributions \(G_{n}\), \(n\ge 1\), are symmetric in the sense that \(G\left( -A\right) =G\left( A\right) \) for all \(A\in \mathcal {B}\left( \mathbb {R}\right) \).

It was shown in [3] that under this assumption concerning distributions \(\{G_{n}, n\ge 1\}\), the Banach Random Walk in a Banach space \(\mathbb {B}\) is a martingale with respect to the natural filtration \(\{\mathcal {F}_n = \sigma (X_1,X_2,\ldots ,X_n), n\ge 1\}\) (and in fact it is also a time-inhomogeneous Markov chain). Moreover, if the Banach space \(\mathbb {B}\) in question possesses the Radon–Nikodym Property (RNP), cf. [4, 9], or [10] for the definition of this notion, then the process \(\{Z_n,n\ge 1\}\) converges strongly a.s. in \(\mathbb {B}\) and in \(L^{p}(\mathbb {B})\) for all \(1\le p < \infty \) to a r.e. \(\xi \). The details of these considerations can be found in [3], thus we omit them here.

The aim of this paper is to describe the main properties of the limit distribution \(\Gamma = P\circ \xi ^{-1}\) of the BRW \(\{Z_n ,n\ge 1\}\) in a Banach space \(\mathbb {B}\); in particular, we are interested in the description of the support \({\mathrm{supp\,}}\Gamma \). It should be pointed out that for a class of bounded, Borel measurable functions \(\Phi \) on the unit ball \(B\subset \mathbb {B}\), the Banach–Lebesgue \(\mathfrak {L}\)-integral can be expressed as the expected value \(E\Phi (\xi )\), see [3], thus the support of \(\xi \) is of the significant importance, for it informs what the minimal domain of the integrand \(\Phi \) should be.

2 Properties of Limit Distribution of the Banach Random Walk in a Banach Space

Throughout this section we assume that \(\mathbb {B}\) is a Banach space which has the RNP and a quasi-orthogonal Schauder basis \(\left\{ b_{n},n\ge 1\right\} \), and \(\left\{ Z_{n},n\ge 1\right\} \) is the BRW in \(\mathbb {B}\) generated by a sequence of symmetric probability distributions \(\left\{ G_{n},n\ge 1\right\} \) concentrated on the interval \(\left[ -1,1\right] \subset \mathbb {R}\). Moreover, let \(\xi \) denote the a.s. limit of the BRW \( \left\{ Z_{n},n\ge 1\right\} \) in \(\mathbb {B}\), and let \(\Gamma =P\circ \xi ^{-1}\) be the measure on the ball \(B=\left\{ x\in \mathbb {B}:\left\| x\right\| \le 1\right\} \) induced by \(\xi \).

Analyzing the construction of the process \(\left\{ Z_{n},n\ge 1\right\} \) in a Banach space one may expect that the limit distribution \(\Gamma = P\circ \xi ^{-1}\) of the BRW is concentrated on the surface \(S(0,1)=\left\{ x\in \mathbb {B} :\left\| x\right\| =1\right\} \) of the closed unit ball \(B=\left\{ x\in \mathbb {B}:\left\| x\right\| \le 1\right\} \). Obviously such a statement is heavily dependent on distributions \(\left\{ G_{n},n\ge 1\right\} \), which exert an influence on r.v.’s \(\left\{ X_{n},n\ge 1\right\} \), and in general need not be true. However, in the most interesting situation when \(\left\{ X_{n},n\ge 1\right\} \) is a sequence of r.v.’s generated by identical distributions with support equal to the interval \(\left[ -1,1\right] \subset \mathbb {R}\), this indeed is the case. To examine this problem we consider the BRW in a Banach space \(\mathbb { B}\) satisfying all the above requirements. First we prove an auxiliary result.

Lemma 1

For every \(x\in \mathbb {B}\) such that \(\left\| \pi _{n-1}\left( x\right) \right\| \le r_{0}\le 1\), the mapping

$$\begin{aligned} \left[ r_{0},\infty \right) \ni r\mapsto \beta _{n}\left( \pi _{n-1}\left( x\right) /r\right) ,\quad r_{0} > 0 , \end{aligned}$$

is a nondecreasing concave function. In consequence, it is continuous in the open interval \(\left( r_{0},\infty \right) \), and a.e. right-hand side and left-hand side differentiable.

Proof

Recall that \(\beta _{n}\left( \pi _{n-1}\left( x\right) \right) \) is defined for \(\left\| \pi _{n-1}\left( x\right) \right\| \le 1\) in such a way that \(\left\| \pi _{n-1}\left( x\right) +\beta _{n}\left( \pi _{n-1}\left( x\right) \right) b_{n}\right\| =1\). Thus, if \(\left\| \pi _{n-1}\left( x\right) \right\| =r_{0}\le 1,\) then \(\left\| \pi _{n-1}\left( x\right) /r+\beta _{n}\left( \pi _{n-1}\left( x\right) /r\right) b_{n}\right\| =1\) for each \(r_{0}\le r<\infty \). Since the unit ball is convex, for all \(r_{0}\le r_{1}\ne r_{2}<\infty \) and \(\lambda _{1},\lambda _{2}\in [0,1]\) such that \(\lambda _{1} + \lambda _{2}=1\), we have

$$\begin{aligned} \left\| \lambda _{1}\frac{\pi _{n-1}\left( x\right) }{r_1}+\lambda _{2}\frac{\pi _{n-1}\left( x\right) }{r_2}+ \left[ \lambda _{1} \beta _{n}\left( \frac{\pi _{n-1}\left( x\right) }{r_1}\right) + \lambda _{2}\beta _{n}\left( \frac{\pi _{n-1}\left( x\right) }{r_2}\right) \right] b_{n}\right\| \le 1. \end{aligned}$$

Hence and from the definition of \(\beta _{n}(\cdot )\) it follows that

$$\begin{aligned} \lambda _{1} \beta _{n}\left( \frac{\pi _{n-1}\left( x\right) }{r_1}\right) + \lambda _{2}\beta _{n}\left( \frac{\pi _{n-1}\left( x\right) }{r_2}\right) \le \beta _{n}\left( \lambda _{1}\frac{\pi _{n-1}\left( x\right) }{r_1}+ \lambda _{2}\frac{\pi _{n-1}\left( x\right) }{r_2}\right) , \end{aligned}$$

i.e., \(\left[ r_{0},\infty \right) \ni r\mapsto \beta _{n}\left( \pi _{n-1}\left( x\right) /r\right) \) is a concave function. Consequently, it is continuous in the open interval \(\left( r_{0},\infty \right) \), and a.e. right-hand side and left-hand side differentiable, cf. [5], Ch. V, Sect. 8, Th. 2.

Obviously, \(\pi _{n-1}\left( x\right) /r\rightarrow 0\), \(r\rightarrow \infty \), therefore \(\beta _{n}\left( \pi _{n-1}\left( x\right) /r\right) \rightarrow 1/\left\| b_{n}\right\| \) as \(r\rightarrow \infty \). Moreover, \(0\le \beta _{n}\left( \pi _{n-1}\left( x\right) /r\right) \le 1/\left\| b_{n}\right\| \) for all \(r\in \left[ r_{0},\infty \right) \); otherwise, in case when \(\beta _{n}\left( \pi _{n-1}\left( x\right) /r\right) >1/\left\| b_{n}\right\| \) for some \(r\ge r_{0}\), we would have

$$\begin{aligned}&\left\| \frac{\pi _{n-1}\left( x\right) }{r}+\beta _{n}\left( \frac{\pi _{n-1}\left( x\right) }{r}\right) b_{n}-\frac{\pi _{n-1}\left( x\right) }{r} -\alpha _{n}\left( \frac{\pi _{n-1}\left( x\right) }{r}\right) b_{n}\right\| \\&\quad =2\beta _{n}\left( \frac{\pi _{n-1}\left( x\right) }{r}\right) \cdot \left\| b_{n}\right\| >2\cdot \frac{1}{\left\| b_{n}\right\| } \cdot \left\| b_{n}\right\| =2, \end{aligned}$$

which leads to a contradiction with the conditions

$$\begin{aligned} \left\| \frac{\pi _{n-1}\left( x\right) }{r}+\beta _{n}\left( \frac{\pi _{n-1}\left( x\right) }{r}\right) b_{n}\right\| \le 1, \quad \left\| \frac{\pi _{n-1}\left( x\right) }{r} +\alpha _{n}\left( \frac{\pi _{n-1}\left( x\right) }{r}\right) b_{n}\right\| \le 1 . \end{aligned}$$

Hence it follows that \(\beta _{n}\left( \pi _{n-1}\left( x\right) /r\right) \) is nondecreasing as \(r_{0} \le r \nearrow \infty \). \(\square \)

To formulate the next result, some explanations are needed. The Schauder basis \(\left\{ b_{n},n\ge 1\right\} \) in a Banach space is called monotone, if for every choice of scalars \(\left\{ x_{n},n\ge 1\right\} \) the sequence of real numbers \(\left\{ \left\| \sum \nolimits _{k=1}^{n}x_{k}b_{k}\right\| ,n\ge 1\right\} \) is nondecreasing. It is fairly well known that for each Banach space with a Schauder basis there exists a norm equivalent to the original one, such that a given basis \(\left\{ b_{n},n\ge 1\right\} \) in this space equipped with the new norm is monotone, see [6], Part I, Ch. I, p. 2. Thus, to avoid additional complications with a new norm concerning notation, in what follows we assume that the basis \(\left\{ b_{n},n\ge 1\right\} \) in \((\mathbb {B},\Vert \cdot \Vert )\) is just monotone.

It is worth mentioning that many typical Schauder bases, such as the sequence of unit vectors in \(c_{0}\) and \(\ell ^{p}\) for \(1\le p < \infty \), or the system of Haar functions in \(L^{p}[0,1]\) for \(1\le p < \infty \) are monotone; furthermore, to obtain this effect the usual norms of these spaces need not be changed, see, e.g., [6], Part I, Ch. I, p. 3.

Theorem 1

Suppose that

$$\begin{aligned} \lim _{n\rightarrow \infty }\prod \limits _{k=1}^{n}G_{k}\left( \left[ -r,r \right] \right) =0 \end{aligned}$$
(1)

for some \(0<r<1\). Then for the closed ball \(B\left( 0,r\right) =\left\{ x\in \mathbb {B}:\left\| x\right\| \le r\right\} ,\) where \(0<r<1\) is a fixed number, we have

$$\begin{aligned} \Gamma \left( B\left( 0,r\right) \right) =0. \end{aligned}$$

In consequence, if condition (1) is satisfied for all \(0<r<1,\) then the whole mass of the measure \(\Gamma =P\circ \xi ^{-1}\) is concentrated on the unit sphere \(S\left( 0,1\right) =\left\{ x\in \mathbb {B}:\left\| x\right\| =1\right\} ,\) so that \({\mathrm{supp\,}}\Gamma \subseteq S\left( 0,1\right) .\)

Proof

Recall that to define the first n steps of the BRW in a Banach space \( \mathbb {B}\) with a quasi-orthogonal Schauder basis \(\left\{ b_{n},n\ge 1\right\} \) we have to use the following transformation \(\Theta _{n}: K_n^0 (0,1) \rightarrow (-1,1)^n \subset \mathbb {R}^{n},\)

$$\begin{aligned} y_{1}= & {} x_{1} , \nonumber \\ y_{2}= & {} \frac{x_{2}}{\beta _{2}\left( x_{1}b_{1}\right) }\, , \nonumber \\ y_{3}= & {} \frac{x_{3}}{\beta _{3}\left( x_{1}b_{1}+x_{2}b_{2}\right) }\, , \nonumber \\&\vdots \nonumber \\ y_{n}= & {} \frac{x_{n}}{\beta _{n}\left( x_{1}b_{1}+\cdots +x_{n-1}b_{n-1}\right) }\, , \end{aligned}$$
(2)

where \( K_{n}\left( 0,r\right) =\left\{ \left( x_{1},\ldots ,x_{n}\right) \in \mathbb {R}^{n}:\left\| x_{1}b_{1}+\cdots +x_{n}b_{n}\right\| \le r\right\} \), and \(K_{n}^{0}\left( 0,r\right) =\, \text {Int}\, K_{n}\left( 0,r\right) =\left\{ \left( x_{1},\ldots ,x_{n}\right) \in \mathbb {R}^{n}:\left\| x_{1}b_{1}+\cdots +x_{n}b_{n}\right\| < r\right\} \), \(0<r<\infty \), \(n\ge 1\). Notice that if \(\left( x_1 ,\ldots ,x_{k-1},0,\ldots ,0\right) \in K_n^0 (0,1)\) for some \(1< k\le n\), then there exists an open ball with center at this point contained in \(K_n^0 (0,1)\), thus \(\beta _{k}\left( x_{1}b_{1}+\cdots +x_{k-1}b_{k-1}\right) >0\) and so \(\Theta _n\) is well defined.

To find the inverse transformation \(T_{n} = \Theta _n^{-1}\) to (2) we introduce recursively a sequence of mappings: \(A_{1}\equiv 1,\)\(A_{2}\left( y_{1}\right) =\beta _{2}\left( y_{1}A_{1}b_{1}\right) =\beta _{2}\left( y_{1}b_{1}\right) ,\)\(A_{3}\left( y_{1},y_{2}\right) =\beta _{3}\left( y_{1}A_{1}b_{1}+y_{2}A_{2}\left( y_{1}\right) b_{2}\right) =\beta _{3}\left( y_{1}b_{1}+y_{2}\beta _{2}\left( y_{1}b_{1}\right) b_{2}\right) ,\ldots \)

$$\begin{aligned} A_{n}\left( y_{1},y_{2},\ldots ,y_{n-1}\right)= & {} \beta _{n}\left( y_{1}A_{1}b_{1}+y_{2}A_{2}\left( y_{1}\right) b_{2}+y_{3}A_{3}\left( y_{1},y_{2}\right) b_{3}\right. \nonumber \\&\left. + \cdots +y_{n-1}A_{n-1}\left( y_{1},y_{2},\ldots ,y_{n-2}\right) b_{n-1}\right) . \end{aligned}$$
(3)

Then the transformation \(T_{n}: (-1,1)^n \rightarrow K_n^0 (0,1)\) is given by

$$\begin{aligned} x_{1}= & {} y_{1}\cdot A_{1}=y_{1}, \nonumber \\ x_{2}= & {} y_{2}\cdot A_{2}\left( y_{1}\right) =y_{2}\cdot \beta _{2}\left( y_{1}b_{1}\right) , \nonumber \\ x_{3}= & {} y_{3}\cdot A_{3}\left( y_{1},y_{2}\right) =y_{3}\cdot \beta _{3}\left( y_{1}b_{1}+y_{2}\beta _{2}\left( y_{1}b_{1}\right) b_{2}\right) , \nonumber \\&\vdots \nonumber \\ x_{n}= & {} y_{n}\cdot A_{n}\left( y_{1},y_{2},\ldots ,y_{n-1}\right) . \end{aligned}$$
(4)

Equations (4) can be verified by induction on the basis of (2). As can be seen, \(\Theta _{n}\left( K_{n}^{0}\left( 0,1\right) \right) = \left( -1,1\right) ^{n}\) along with \(T_{n}\left( \left( -1,1\right) ^{n} \right) =K_{n}^{0}\left( 0,1\right) ,\) and both these mappings restricted to the domains considered here are one-to-one. The map \(T_n\) is also well defined in the whole closed cube \([-1,1]^n\), but then in general it is not injective, in particular—on the boundary \([-1,1]^n \setminus (-1,1)^n\). Thus, although \(\Theta _n \) is in fact the inverse mapping to \(\left. T_n \right| _{(-1,1)^n}\), instead of the inverse transformation to \(T_n\) acting on \([-1,1]^n\) which need not exist, we must investigate inverse images \(T_n^{-1} (B)\) of Borel sets \(B\in \mathcal {B}\left( K_n(0,1) \right) \).

Let \((Y_1,\ldots ,Y_n)\) be a random vector with values in \([-1,1]^n\) and distribution \(\prod _{k=1}^n G_k\). Taking into account the construction of BRW, we conclude that \((X_1,\ldots ,X_n) = T_n (Y_1,\ldots ,Y_n) \). Observe that each map \(\beta _{k}\left( x_{1}b_{1}+\cdots +x_{k-1}b_{k-1}\right) \) is a continuous function of \(\left( x_{1},\ldots ,x_{k-1}\right) \in K_{k-1} (0,1) \); to see this, consider sets of the form \(p_{k-1}\left( S_{+}\cap (\mathbb {R}^{k-1}\times F) \right) = \left( \beta _k^{\prime }\right) ^{-1}(F)\), where \(S_{+}\) is the graph of \(\beta _k^{\prime }(x_1,\ldots ,x_{k-1})=\beta _k \left( x_{1}b_{1}+\cdots +x_{k-1}b_{k-1}\right) \), \(p_{k-1}(x_1,\ldots ,x_k) = (x_1,\ldots ,x_{k-1})\) is the usual projection of \(\mathbb {R}^k\) onto \(\mathbb {R}^{k-1}\), and F is a closed subset of \(\mathbb {R}\). Since \(T_n\) is a composition of continuous functions with \(\beta _k\), we conclude that \(T_n\) is continuous as well and in consequence \((X_1,\ldots ,X_n)\) is a random vector. The distribution of \((X_1,\ldots ,X_n)\) is equal

$$\begin{aligned} P\circ (X_1,\ldots ,X_n)^{-1} = P\circ (Y_1,\ldots ,Y_n)^{-1}\circ T_n^{-1} = \left( \prod _{k=1}^n G_k \right) \circ T_n ^{-1} . \end{aligned}$$

From (4) we infer that for a fixed \(0<r < 1\),

$$\begin{aligned}&\left\| x_{1}b_{1}+x_{2}b_{2}+\cdots +x_{n}b_{n}\right\| \le r\nonumber \\&\quad \Leftrightarrow ~\left\| y_{1}b_{1}+y_{2}A_{2}\left( y_{1}\right) b_{2}+\cdots +y_{n} A_{n}\left( y_{1},\ldots ,y_{n-1}\right) b_{n}\right\| \le r. \end{aligned}$$
(5)

Define

$$\begin{aligned} D_{n}\left( r\right)= & {} T_{n}^{-1}\left( K_{n}(0,r)\right) =\left\{ \left( y_{1},\ldots ,y_{n}\right) \in \left[ -1,1\right] ^{n}:\left\| y_{1}b_{1}+y_{2}A_{2}\left( y_{1}\right) b_{2}\right. \right. \nonumber \\&\left. \left. +\cdots +y_{n} A_{n}\left( y_{1},\ldots ,y_{n-1}\right) b_{n}\right\| \le r\right\} , \end{aligned}$$

cf. (5). Since \(K_n(0,r)\) is a closed subset of \(K_n (0,1)\), the set \(D_n (r)\) is a Borel subset of \([-1,1]^n\).

Divide both sides of (5) by r and observe that if \(\left( y_{1},\ldots ,y_{n}\right) \in D_{n}\left( r\right) \), then by definition of \( \beta _{n}\left( \pi _{n-1}\left( x\right) \right) \) we obtain

$$\begin{aligned} \left| \frac{y_{n}\cdot A_{n}\left( y_{1},\ldots ,y_{n-1}\right) }{r} \right| \le \beta _{n}\left( \frac{y_{1}b_{1}+\cdots +y_{n-1} A_{n-1}\left( y_{1},\ldots ,y_{n-2}\right) b_{n-1}}{r}\right) , \end{aligned}$$

where \(A_{n}\left( y_{1},y_{2},\ldots ,y_{n-1}\right) \) is given by (3 ), i.e.,

$$\begin{aligned} \left| y_{n}\right| \le \frac{r\cdot \beta _{n}\left( \displaystyle \frac{ y_{1}b_{1}+y_{2}A_{2}\left( y_{1}\right) b_{2}+\cdots +y_{n-1} A_{n-1}\left( y_{1},\ldots ,y_{n-2}\right) b_{n-1}}{r}\right) }{\beta _{n}\left( y_{1}A_{1}b_{1}+y_{2}A_{2}\left( y_{1}\right) b_{2}+\cdots +y_{n-1}A_{n-1}\left( y_{1},\ldots ,y_{n-2}\right) b_{n-1}\right) }. \end{aligned}$$
(6)

Applying Lemma 1 we have

$$\begin{aligned}&\beta _{n}\left( \displaystyle \frac{ y_{1}b_{1}+y_{2}A_{2}\left( y_{1}\right) b_{2}+\cdots +y_{n-1} A_{n-1}\left( y_{1},\ldots ,y_{n-2}\right) b_{n-1}}{r}\right) \nonumber \\&\quad \le \beta _{n}\left( y_{1}A_{1}b_{1}+y_{2}A_{2}\left( y_{1}\right) b_{2}+\cdots +y_{n-1}A_{n-1}\left( y_{1},\ldots ,y_{n-2}\right) b_{n-1}\right) , \end{aligned}$$

for \(r \le 1\). Taking into account the above estimate and (6) we conclude that \(\left| y_{n}\right| \le r.\) In consequence,

$$\begin{aligned} D_{n}\left( r\right) \subseteq \left\{ \left( y_{1},\ldots ,y_{n}\right) \in \left[ -1,1\right] ^{n}:\left| y_{n}\right| \le r\right\} . \end{aligned}$$

Moreover, since the basis \(\{ b_{n}, n\ge 1 \}\) is monotone, condition (5) implies that

$$\begin{aligned} \left\| y_{1}b_{1}+y_{2}A_{2}\left( y_{1}\right) b_{2}+\cdots +y_{n-1} A_{n-1}\left( y_{1},\ldots ,y_{n-2}\right) b_{n-1}\right\| \le r. \end{aligned}$$

In other words,

$$\begin{aligned} D_{n}\left( r\right)\subseteq & {} \left\{ \left( y_{1},\ldots ,y_{n}\right) \in \left[ -1,1\right] ^{n}: \left\| y_{1}b_{1}+\cdots +y_{n-1} A_{n-1}\left( y_{1},\ldots ,y_{n-2}\right) b_{n-1}\right\| \right. \nonumber \\&\left. \le r,\left| y_{n}\right| \le r\right\} . \end{aligned}$$

Arguing in a similar way as above we infer that \(\left| y_{n-1}\right| \le r,\) next \(\left| y_{n-2}\right| \le r,\) etc., and finally, from \(\left\| y_{1}b_{1}\right\| \le r\) and \( \left\| b_{1}\right\| =1,\) it follows that \(\left| y_{1}\right| \le r\). Thus we conclude that

$$\begin{aligned} D_{n}\left( r\right) \subseteq \left\{ \left( y_{1},\ldots ,y_{n}\right) \in \left[ -1,1\right] ^{n}:\left| y_{1}\right| \le r,\ldots ,\left| y_{n}\right| \le r\right\} =\left[ -r,r\right] ^{n} , \end{aligned}$$

i.e., \( T_{n}^{-1}\left( K_{n}\left( 0,r\right) \right) = D_{n}\left( r\right) \subseteq \left[ -r,r\right] ^{n} . \) Hence it follows that

$$\begin{aligned} \Gamma \left( \pi _{n}^{-1}\left( B_{n}\left( 0,r\right) \right) \right)= & {} P\circ \xi ^{-1}\left( \pi _{n}^{-1}\left( B_{n}\left( 0,r\right) \right) \right) \nonumber \\= & {} P\left[ \, \pi _{n}\left( \xi \right) \in B_{n}\left( 0,r\right) \right] \nonumber \\= & {} P\left[ Z_{n}\in B_{n}\left( 0,r\right) \right] =P\left[ \left( X_{1},\ldots ,X_{n}\right) \in K_{n}\left( 0,r\right) \right] \nonumber \\= & {} P\left[ \, T_n \left( Y_{1},\ldots ,Y_{n}\right) \in K_{n}\left( 0,r\right) \right] \nonumber \\= & {} P\left[ \left( Y_{1},\ldots ,Y_{n}\right) \in T_{n}^{-1} \left( K_{n}\left( 0,r\right) \right) \right] \nonumber \\= & {} \left( \prod \limits _{k=1}^{n}G_{k}\right) \left( T_{n}^{-1}\left( K_{n}\left( 0,r\right) \right) \right) =\left( \prod \limits _{k=1}^{n}G_{k}\right) \left( D_{n}\left( r\right) \right) \nonumber \\\le & {} \prod \limits _{k=1}^{n}G_{k}\left( \left[ -r,r\right] \right) . \end{aligned}$$
(7)

In fact we have

$$\begin{aligned} \Gamma \left( \pi _{n}^{-1}\left( B_{n}\left( 0,r\right) \right) \right) =\Gamma \left( \pi _{n}^{-1}\left( B_{n}\left( 0,r\right) \right) \cap B \right) , \end{aligned}$$
(8)

as we already know that \({\mathrm{supp\,}}\Gamma \subseteq B .\) Furthermore,

$$\begin{aligned} \pi _{1}^{-1}\left( B_{1}\left( 0,r\right) \right) \cap B \supseteq \pi _{2}^{-1}\left( B_{2}\left( 0,r\right) \right) \cap B \supseteq \cdots \supseteq \pi _{n}^{-1}\left( B_{n}\left( 0,r\right) \right) \cap B \supseteq \cdots \end{aligned}$$
(9)

and

$$\begin{aligned} \bigcap \limits _{n=1}^{\infty }\pi _{n}^{-1}\left( B_{n}\left( 0,r\right) \right) \cap B = B \left( 0,r\right) . \end{aligned}$$
(10)

Consequently,

$$\begin{aligned} \Gamma \left( B\left( 0,r\right) \right)= & {} \Gamma \left( \bigcap \limits _{n=1}^{\infty }\pi _{n}^{-1}\left( B_{n}\left( 0,r\right) \right) \cap B \right) \\= & {} \lim _{n\rightarrow \infty }\Gamma \left( \pi _{n}^{-1}\left( B_{n}\left( 0,r\right) \right) \cap B \right) \le \lim _{n\rightarrow \infty }\prod \limits _{k=1}^{n}G_{k}\left( \left[ -r,r\right] \right) =0. \end{aligned}$$

If \(0<r<1\) in (1) can be arbitrary, the final conclusion \(\Gamma \left( S\left( 0,1\right) \right) =1\) of the theorem, which can be rewritten also in the form \({\mathrm{supp\,}}\Gamma \subseteq S\left( 0,1\right) ,\) is evident. \(\square \)

Corollary 1

If \(\left\{ G_{n},n\ge 1\right\} \) is a sequence of identical distributions \(G_{n}=G,\)\(n\ge 1,\) such that \(G\left( \left[ -r,r\right] \right) <1\) for each \(0<r<1,\) then the assertion of Theorem 1 remains valid. In particular, if \(G_{n}=U,\)\(n\ge 1,\) are identical uniform distributions on \(\left[ -1,1\right] ,\) then Theorem 1 holds true.

We are able to prove as well a result going in the opposite direction. To formulate the next theorem, given any \(0<r\le 1\), we choose a sequence of positive real numbers \(\left\{ q_{n},n\ge 1\right\} \) satisfying condition

$$\begin{aligned} 0<q_{n}<\left( \sqrt{r^{2}+4r}-r\right) /2 \le \left( \sqrt{5}-1\right) /2 ,\quad n \ge 1 , \end{aligned}$$

(i.e., \(q_{n}^{2}+q_{n}^{3}+q_{n}^{4}+\cdots =q_{n}^{2}/\left( 1-q_{n}\right) <r\) ) and put

$$\begin{aligned} s_{k,n}=q_{n}^{k}+q_{n}^{k+1}+\cdots +q_{n}^{n}\quad \text {for }\quad 2\le k\le n ,\quad s_{n+1,n}=0 ,\quad n \ge 1 . \end{aligned}$$

Theorem 2

Assume that for a given \(0<r\le 1,\) there exists a sequence of numbers \(\left\{ q_{n},n\ge 1\right\} \subset \mathbb {R}\) satisfying the above requirements, such that

$$\begin{aligned}&\limsup _{n\rightarrow \infty }G_{1}\left( \left[ -\frac{\left( r-s_{2,n}\right) }{\left( 1-s_{2,n}\right) },\frac{\left( r-s_{2,n}\right) }{ \left( 1-s_{2,n}\right) }\right] \right) \nonumber \\&\quad \cdot \prod \limits _{k=2}^{n}G_{k}\left( \left[ -\frac{q_{n}^{~k}}{\left( 1-s_{k+1,n}\right) },\frac{q_{n}^{~k}}{ \left( 1-s_{k+1,n}\right) }\right] \right) = c_{r}>0. \end{aligned}$$
(11)

Then we have

$$\begin{aligned} \Gamma \left( B\left( 0,r\right) \right) \ge c_{r}>0, \end{aligned}$$

therefore if  \(0<r<1\), then the whole mass of the measure \(\Gamma \) cannot be concentrated on the unit sphere \(S\left( 0,1\right) =\left\{ x\in \mathbb {B}:\left\| x\right\| =1\right\} .\)

Proof

Let \(\Theta _{n}\) and \(T _{n} \) be the transformations given by ( 2) and (4) resp. Notice that then

$$\begin{aligned}&\beta _{k}\left( y_{1}A_{1}b_{1}+y_{2}A_{2}\left( y_{1}\right) b_{2}+\cdots +y_{k-1}A_{k-1}\left( y_{1},y_{2},\ldots ,y_{k-2}\right) b_{k-1}\right) \\&\quad =A_{k}\left( y_{1},y_{2},\ldots ,y_{k-1}\right) ,\quad 2\le k\le n, \end{aligned}$$

cf. (3). Since for every fixed \(x,y\in \mathbb {B}\) the mapping \( t\mapsto \left\| x+ty\right\| \) is a continuous function of the parameter \(t\in \mathbb {R}\), we have the following system of equivalent conditions:

$$\begin{aligned}&\left\| \left( 1-s_{2,n}\right) y_{1}b_{1}\right\| \le r-s_{2,n}\Leftrightarrow \left| y_{1}\right| \le \frac{r-s_{2,n}}{ 1-s_{2,n}}\, ,\nonumber \\&\left\| q_{n}^{2}y_{1}b_{1}+\left( 1-s_{3,n}\right) y_{2}A_{2}b_{2}\right\| \le q_{n}^{2}\Leftrightarrow \left| y_{2}\right| \le \frac{q_{n}^{2}}{1-s_{3,n}},\nonumber \\&\left\| q_{n}^{3}\left( y_{1}b_{1}+y_{2}A_{2}b_{2}\right) +\left( 1-s_{4,n}\right) y_{3}A_{3}b_{3}\right\| \le q_{n}^{3} \Leftrightarrow \left| y_{3}\right| \le \frac{q_{n}^{3}}{ 1-s_{4,n}}, \nonumber \\&\quad \qquad \qquad \qquad \vdots \nonumber \\&\left\| q_{n}^{n}\left( y_{1}b_{1}+y_{2}A_{2}b_{2}+\cdots +y_{n-1}A_{n-1}b_{n-1}\right) +y_{n}A_{n}b_{n}\right\| \le q_{n}^{n}\Leftrightarrow \left| y_{n}\right| \le q_{n}^{n} \end{aligned}$$
(12)

(to simplify the writing, we put here \(A_{k}=A_{k}\left( y_{1},y_{2},\ldots ,y_{k-1}\right) \), \(2\le k\le n\)). Summing all the inequalities on the left-hand side of (12) we conclude that

$$\begin{aligned}&\left\| y_{1}b_{1}+y_{2}A_{2}\left( y_{1}\right) b_{2}+\cdots +y_{n} A_{n}\left( y_{1},\ldots ,y_{n-1}\right) b_{n}\right\| \le \left\| \left( 1-s_{2,n}\right) y_{1}b_{1}\right\| \nonumber \\&\qquad + \left\| q_{n}^{2}y_{1}b_{1}+\left( 1-s_{3,n}\right) y_{2}A_{2}b_{2}\right\| +\left\| q_{n}^{3}\left( y_{1}b_{1}+y_{2}A_{2}b_{2}\right) +\left( 1-s_{4,n}\right) y_{3}A_{3}b_{3}\right\| \nonumber \\&\qquad +\cdots +\left\| q_{n}^{n}\left( y_{1}b_{1}+y_{2}A_{2}b_{2}+\cdots +y_{n-1}A_{n-1}b_{n-1}\right) +y_{n}A_{n}b_{n}\right\| \nonumber \\&\quad \le r-s_{2,n}+q_{n}^{2}+q_{n}^{3}+\cdots +q_{n}^{n}=r, \end{aligned}$$

thus

$$\begin{aligned}&\Delta _{n}\left( r,q_{n}\right) \\&\quad :=\left\{ \left( y_{1},\ldots ,y_{n}\right) \in \left[ -1,1\right] ^{n}:\left| y_{1}\right| \le \frac{r-s_{2,n}}{1-s_{2,n}} ,\left| y_{2}\right| \le \frac{q_{n}^{2}}{1-s_{3,n}},\ldots ,\left| y_{n}\right| \le q_{n}^{n}\right\} \\&\quad \subseteq \left\{ \left( y_{1},\ldots ,y_{n}\right) \in \left[ -1,1\right] ^{n} : \left\| y_{1}b_{1}+\cdots +y_{n} A_{n}\left( y_{1},\ldots ,y_{n-1}\right) b_{n}\right\| \le r\right\} =D_{n}\left( r\right) . \end{aligned}$$

Hence, by analogy to (7)–(8), it follows that

$$\begin{aligned}&\Gamma \left( \pi _{n}^{-1}\left( B_{n}\left( 0,r\right) \right) \cap B \right) =\left( \prod \limits _{k=1}^{n}G_{k}\right) \left( D_{n}\left( r\right) \right) \ge \left( \prod \limits _{k=1}^{n}G_{k}\right) \left( \Delta _{n}\left( r,q_{n}\right) \right) \\&\quad =G_{1}\left( \left[ -\frac{r-s_{2,n}}{1-s_{2,n}},\frac{r-s_{2,n}}{1-s_{2,n}} \right] \right) \prod \limits _{k=2}^{n}G_{k}\left( \left[ -\frac{ q_{n} ^{~k}}{1-s_{k+1,n}},\frac{ q_{n} ^{~k}}{1-s_{k+1,n}} \right] \right) . \end{aligned}$$

Passing to the limit as \(n\rightarrow \infty \), on account of (9 )–(10) and the assumption (11) we finally conclude that \(\Gamma \left( B\left( 0,r\right) \right) \ge c_{r}>0\). \(\square \)

Combining Theorems 1 and 2 we obtain the following result.

Corollary 2

Let \(\left\{ G_{n},n\ge 1\right\} \) be a sequence of probability distributions concentrated on the interval \(\left[ -1,1\right] \subset \mathbb {R}\) such that condition (1) is satisfied for all r, \(0<r<r_{1}<1\), and there exists a sequence of positive numbers \(\left\{ q_{n},n\ge 1\right\} \subset \mathbb {R}\) such that \( q_{n}^{2}+q_{n}^{3}+q_{n}^{4}+\cdots =q_{n}^{2}/\left( 1-q_{n}\right) <r_{1}\), \(n \ge 1\), along with condition (11) satisfied for \(r=r_{1}.\) Then

$$\begin{aligned} \Gamma \left( B\left( 0,r\right) \right) =0,\quad 0<r<r_{1},\quad \text {and}\quad \Gamma \left( B\left( 0,r_{1}\right) \right) \ge c_{r_{1}}>0. \end{aligned}$$

Thus \({\mathrm{supp\,}}\Gamma \subseteq B \setminus B^{0}\left( 0,r_{1}\right) ,\) where \(B^{0}\left( 0,r_{1}\right) =\left\{ x\in \mathbb {B}:\left\| x\right\| <r_{1}\right\} .\)

Remark 1

It is obvious that if \(c_{r}=1\) for some \(0<r<1\) in condition (11), then \(\Gamma \left( B(0,r)\right) = 1\), thus in such a case \({\mathrm{supp\,}}\Gamma \subseteq B(0,r)\).

3 Limit Distribution of the Banach Random Walk in \(\ell ^{p}\)

The assertion of Theorem 1 is quite clear and undoubtedly the assumptions of this result can be satisfied, but it is not so evident that there can be found a sequence of numbers \(\left\{ q_{n},n\ge 1\right\} \) satisfying conditions specified in Theorem or Corollary 2. Therefore to solve the problem, we consider in more detail the space \(\mathbb {B}=\ell ^{p},\) i.e., the separable Banach space of all infinite sequences \(x=\left( x_{1},x_{2},\ldots \right) \subset \mathbb {R}\) with norm \(\left| x\right| _{p}=\left( \sum \nolimits _{n=1}^{\infty }\left| x_{n}\right| ^{p}\right) ^{1/p}<\infty \), \(1\le p < \infty \). As will be seen later, in such a case not merely a fixed ball \(B\left( 0,r\right) \subset \ell ^{p}\) has a positive measure \(\Gamma \) for suitably chosen distributions \(\left\{ G_{n},n\ge 1\right\} \), but even for all \(0<r<1\) we may have \(\Gamma \left( B\left( 0,r\right) \right) >0.\)

Proposition 1

Let \(\left\{ Z_{n},n\ge 1\right\} \) be the BRW in \(\ell ^{p}\), \(1\le p < \infty \), generated by a sequence \(\left\{ G_{n},n\ge 1\right\} \) of symmetric probability distributions on the interval \(\left[ -1,1\right] \), let  \(\xi \) be the a.s. limit of the BRW \(\left\{ Z_{n},n\ge 1\right\} \) in \(\ell ^{p},\) and let \(\Gamma =P\circ \xi ^{-1}\) denote the measure on \(B=\left\{ x\in \ell ^{p}:\left| x\right| _{p} \le 1\right\} \) induced by \(\xi \). Consider a triangular array \(\left\{ c_{k,n},1\le k\le n,n\ge 1\right\} \) of real numbers satisfying the following conditions:

$$\begin{aligned} 0<c_{k,n}<1\quad \text {for all}\quad k,n,\quad \text {and}\quad \sum \limits _{k=1}^{n}c_{k,n}=1,\quad n=1,2,\ldots \end{aligned}$$

Assume that the distributions \(G_{n},\)\(n\ge 1\), are chosen in such a way that

$$\begin{aligned} \limsup \limits _{n\rightarrow \infty }\prod \limits _{k=1}^{n}G_{k}\left( \left[ -\left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{1/p},\left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{1/p}\right] \right) =c_{r}>0 \end{aligned}$$

for a fixed \(0<r<1\). Then for the closed ball \(B\left( 0,r\right) =\left\{ x\in \ell ^{p}:\left| x\right| _p \le r\right\} ,\) where \(0<r<1,\) we have

$$\begin{aligned} \Gamma \left( B\left( 0,r\right) \right) \ge c_{r}>0. \end{aligned}$$

Consequently, in such a case the whole mass of measure \(\Gamma \) is not concentrated on the unit sphere \(S\left( 0,1\right) =\left\{ x\in \ell ^{p}:\left| x\right| _p =1\right\} .\)

Proof

As in the proof of Theorem 1, we now consider two transformations: \(\Theta _{n}:K_{n}^{0}\left( 0,1\right) =\left\{ \left( x_{1},\ldots ,x_{n}\right) \in \mathbb {R}^{n}:\left| x_{1}\right| ^{p}+\cdots +\left| x_{n}\right| ^{p} < 1\right\} \rightarrow \left( -1,1\right) ^{n}\) and \(T _{n}:\left( -1,1\right) ^{n} \rightarrow K_{n}^{0}\left( 0,1\right) \), given by

$$\begin{aligned} y_{1}= & {} x_{1}, \nonumber \\ y_{2}= & {} \frac{x_{2}}{\left( 1-\left| x_{1}\right| ^{p}\right) ^{1/p}}, \nonumber \\ y_{3}= & {} \frac{x_{3}}{\left[ 1-\left( \left| x_{1}\right| ^{p}+\left| x_{2}\right| ^{p}\right) \right] ^{1/p}}, \nonumber \\&\vdots \nonumber \\ y_{n}= & {} \frac{x_{n}}{\left[ 1-\left( \left| x_{1}\right| ^{p}+\cdots +\left| x_{n-1}\right| ^{p}\right) \right] ^{1/p}}, \end{aligned}$$
(13)

and

$$\begin{aligned} x_{1}= & {} y_{1}, \nonumber \\ x_{2}= & {} y_{2}\cdot \left( 1-\left| y_{1}\right| ^{p}\right) ^{1/p}, \nonumber \\ x_{3}= & {} y_{3}\cdot \left[ \left( 1-\left| y_{1}\right| ^{p}\right) \cdot \left( 1-\left| y_{2}\right| ^{p}\right) \right] ^{1/p}, \nonumber \\&\qquad \vdots \nonumber \\ x_{n}= & {} y_{n}\cdot \left[ \left( 1-\left| y_{1}\right| ^{p}\right) \cdot \ldots \cdot \left( 1-\left| y_{n-1}\right| ^{p}\right) \right] ^{1/p}, \end{aligned}$$
(14)

resp. To derive (14), proceed by induction. We may also extend \(T_n\) to the whole closed cube \([-1,1]^n\) by (14). Then \(P\circ (X_1,\ldots ,X_n)^{-1} = \left( \prod _{k=1}^{n} G_k \right) \circ T_n ^{-1}\), as well as \(\Theta _n ^{-1} = \left. T_n \right| _{(-1,1)^n} \) is the inverse map to \(\Theta _n\). Notice next that

$$\begin{aligned} \left| x_{1}\right| ^{p}+\left| x_{2}\right| ^{p}+\cdots +\left| x_{n}\right| ^{p}=1-\left( 1-\left| y_{1}\right| ^{p}\right) \cdot \left( 1-\left| y_{2}\right| ^{p}\right) \cdot \ldots \cdot \left( 1-\left| y_{n}\right| ^{p}\right) , \end{aligned}$$

thus for a fixed \(0<r<1\) we have

$$\begin{aligned}&\left| x_{1}\right| ^{p}+\left| x_{2}\right| ^{p}+\cdots +\left| x_{n}\right| ^{p}\le r^{p}\nonumber \\&\quad \Leftrightarrow ~\left( 1-\left| y_{1}\right| ^{p}\right) \cdot \left( 1-\left| y_{2}\right| ^{p}\right) \cdot \ldots \cdot \left( 1-\left| y_{n}\right| ^{p}\right) \ge 1-r^{p}. \end{aligned}$$
(15)

Arguing similarly as above we observe that

$$\begin{aligned}&\left( \bigwedge \limits _{1\le k\le n}~\left( 1-\left| y_{k}\right| ^{p}\right) \ge \left( 1-r^{p}\right) ^{c_{k,n}}\right) \\&\quad \Rightarrow ~\left( 1-\left| y_{n}\right| ^{p}\right) \left( 1-\left| y_{n}\right| ^{p}\right) \cdot \ldots \cdot \left( 1-\left| y_{n}\right| ^{p}\right) \ge \left( 1-r^{p}\right) ^{\sum \nolimits _{k=1}^{n}c_{k,n}}=\left( 1-r^{p}\right) . \end{aligned}$$

Moreover, for each fixed k

$$\begin{aligned} \left( 1-\left| y_{k}\right| ^{p}\right) \ge \left( 1-r^{p}\right) ^{c_{k,n}}\quad \Leftrightarrow \quad \left| y_{k}\right| \le \left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{1/p}. \end{aligned}$$

Hence

$$\begin{aligned}&\left[ -\left[ 1-\left( 1-r^{p}\right) ^{c_{1,n}}\right] ^{1/p},\left[ 1-\left( 1-r^{p}\right) ^{c_{1,n}}\right] ^{1/p}\right] \\&\quad \times \cdots \times \left[ -\left[ 1-\left( 1-r^{p}\right) ^{c_{n,n}}\right] ^{1/p}, \left[ 1-\left( 1-r^{p}\right) ^{c_{n,n}}\right] ^{1/p}\right] \subset D_{n}\left( r\right) , \end{aligned}$$

where

$$\begin{aligned} D_{n}\left( r\right) = T_n ^{-1} \left( K_n (0,r) \right)= & {} \left\{ \left( y_{1},\ldots ,y_{n}\right) \in \left[ -1,1\right] ^{n} :\left( 1-\left| y_{1}\right| ^{p}\right) \left( 1-\left| y_{2}\right| ^{p}\right) \right. \\&\left. \cdot \ldots \cdot \left( 1-\left| y_{n}\right| ^{p}\right) \ge 1-r^{p}\right\} . \end{aligned}$$

Therefore, for each \(n\ge 1\) we have

$$\begin{aligned}&\prod \limits _{k=1}^{n}G_{k}\left( \left[ -\left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{1/p},\left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{1/p}\right] \right) \\&\quad \le \left( G_{1}\times G_{2}\times \cdots \times G_{n}\right) \left( D_{n}\left( r\right) \right) =\Gamma \left( \pi _{n}^{-1}\left( B_{n}\left( 0,r\right) \right) \cap B \right) , \end{aligned}$$

cf. (7)–(8). Referring to (9)–(10) we obtain

$$\begin{aligned} \Gamma \left( B\left( 0,r\right) \right)= & {} \Gamma \left( \bigcap \limits _{n=1}^{\infty }\pi _{n}^{-1}\left( B_{n}\left( 0,r\right) \right) \cap B \right) = \lim _{n\rightarrow \infty }\Gamma \left( \pi _{n}^{-1}\left( B_{n}\left( 0,r\right) \right) \cap B \right) \\\ge & {} \limsup _{n\rightarrow \infty }\prod \limits _{k=1}^{n}G_{k}\left( \left[ - \left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{1/p},\left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{1/p}\right] \right) \\= & {} c_{r}>0, \end{aligned}$$

which concludes the proof. \(\square \)

The example presented below shows that the distribution of the limit random element \(\xi \) of the BRW in the Banach space \(\mathbb {B}=\ell ^{p}\) may in some sense be split uniformly on balls centered at 0.

Example 1

Let \(G_{k},\,k\ge 1,\) be symmetric probability distributions on \(\left[ -1,1\right] \) such that

$$\begin{aligned} G_{k}\left( \left[ -z,z\right] \right) =\left\{ 1-\left( 1-z^{p}\right) ^{2^{k}}\right\} ^{1/p2^{k}}\quad \text {for}\quad 0\le z\le 1,~ k\ge 1. \end{aligned}$$
(16)

Notice that

$$\begin{aligned} G_{k}\left( \left[ -z,z\right] \right) \rightarrow 0\text { as } z\rightarrow 0,\quad G_{k}\left( \left[ -z,z\right] \right) \rightarrow 1\text { as }z\rightarrow 1, \end{aligned}$$

and since

$$\begin{aligned} \left\{ G_{k}\left( \left[ -z,z\right] \right) ^{p2^{k}}\right\} ^{\prime }=-2^{k}\left( 1-z^{p}\right) ^{2^{k}-1}\left( -pz^{p-1}\right) =2^{k}pz^{p-1}\left( 1-z^{p}\right) ^{2^{k}-1}>0 \end{aligned}$$

for \(0<z<1,\) it follows that the maps \(G_{k}\left( \left[ -z,z\right] \right) \) are increasing in the interval \(0<z<1.\) Therefore \(G_{k},\)\(k\ge 1,\) are well defined. Consider the triangular array \(\left\{ c_{k,n},1\le k\le n,n\ge 1\right\} \) of real numbers given by

$$\begin{aligned} c_{k,n}=1/2^{k}\quad \text {for}\quad 1\le k\le n-1,\quad \text {and}\quad c_{n,n}=1/2^{n-1}. \end{aligned}$$

Clearly, we have

$$\begin{aligned} \sum \limits _{k=1}^{n}c_{k,n}=\sum \limits _{k=1}^{n-1}\frac{1}{2^{k}}+\frac{1}{ 2^{n-1}}= \frac{1}{2}\cdot \frac{1-1/2^{n-1}}{1-1/2} +\frac{1}{2^{n-1}}=1. \end{aligned}$$

Substituting \(z=\left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{1/p}\) in the definition of \(G_{k}\left( \left[ -z,z\right] \right) \) we obtain

$$\begin{aligned} \left\{ 1-\left( 1-z^{p}\right) ^{2^{k}}\right\} ^{1/p2^{k}}= & {} \left\{ 1-\left( 1-\left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{p\cdot 1/p}\right) ^{2^{k}}\right\} ^{1/p2^{k}}\\= & {} \left\{ 1-\left( 1-r^{p}\right) ^{c_{k,n}\cdot 2^{k}}\right\} ^{1/p2^{k}}=\left\{ r^{p}\right\} ^{1/p2^{k}}=r^{1/2^{k}} \end{aligned}$$

for \(1\le k\le n-1 ,\) and

$$\begin{aligned} \left\{ 1-\left( 1-z^{p}\right) ^{2^{n}}\right\} ^{1/p2^{n}}= & {} \left\{ 1-\left( 1-\left[ 1-\left( 1-r^{p}\right) ^{c_{n,n}}\right] ^{p\cdot 1/p}\right) ^{2^{n}}\right\} ^{1/p2^{n}}\\= & {} \left\{ 1-\left( 1-r^{p}\right) ^{c_{n,n}\cdot 2^{n}}\right\} ^{1/p2^{n}}=\left\{ 1-\left( 1-r^{p}\right) ^{2}\right\} ^{1/p2^{n}}\\= & {} r^{1/2^{n}}\cdot \left( 2-r^{p}\right) ^{1/p2^{n}} \end{aligned}$$

for \(k=n .\) Hence

$$\begin{aligned}&\prod \limits _{k=1}^{n}G_{k}\left( \left[ -\left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{1/p},\left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{1/p}\right] \right) \\&\quad =\left( \prod \limits _{k=1}^{n-1}r^{1/2^{k}}\right) \cdot r^{1/2^{n}}\cdot \left( 2-r^{p}\right) ^{1/p2^{n}}=r^{\sum \nolimits _{k=1}^{n-1}\left( 1/2^{k}\right) }\cdot r^{1/2^{n}}\cdot \left( 2-r^{p}\right) ^{1/p2^{n}}\\&\quad =r^{1-1/2^{n-1}+1/2^{n}}\cdot \left( 2-r^{p}\right) ^{1/p2^{n}}=r^{1-1/2^{n}}\cdot \left( 2-r^{p}\right) ^{1/p2^{n}}\rightarrow r, \end{aligned}$$

so that

$$\begin{aligned} \limsup \limits _{n\rightarrow \infty }\prod \limits _{k=1}^{n}G_{k}\left( \left[ -\left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{1/p},\left[ 1-\left( 1-r^{p}\right) ^{c_{k,n}}\right] ^{1/p}\right] \right) =r>0. \end{aligned}$$

Applying Proposition 1 we conclude that \(\Gamma \left( B\left( 0,r\right) \right) \ge r\) for all \(0<r<1.\) From the last estimate it follows in addition that \(\Gamma \left( S\left( 0,1\right) \right) =0.\)

Corollary 3

For every \(1\le p<\infty ,\) in the Banach space \(\mathbb {B}=\ell ^{p}\) there exists a Borel probability measure \(\Gamma \) with \({\mathrm{supp\,}}\Gamma =B\left( 0,1\right) \), such that \(\Gamma \left( S\left( 0,1\right) \right) =0 \) and \(\Gamma \left( B\left( 0,r\right) \right) \ge r\) for all \(0<r<1\).

A small modification of distributions considered above leads to another interesting situation.

Example 2

Let \(G_{k},\)\(k\ge 1,\) be symmetric probability distributions on \(\left[ -1,1\right] \) satisfying condition (16) for all \(z\in [ r_{1}, 1],\) and condition (1) for all \(r\in (0,r_{1}),\) where \(0<r_{1}<1\) is a fixed number. In other words, we may assume that apart from (16) valid for \(r_{1}\le z\le 1\), two equal masses

$$\begin{aligned} G_{k}\left( \left\{ -r_{1}\right\} \right) = \frac{1}{2}\cdot \left\{ 1-\left( 1-r_{1}^{p}\right) ^{2^{k}}\right\} ^{1/p2^{k}} =G_{k}\left( \left\{ r_{1}\right\} \right) \end{aligned}$$

are assigned to points \(\left\{ -r_{1}\right\} ,\)\(\left\{ r_{1}\right\} \) by distributions \(G_{k}\), while \(G_{k}\left( \left[ -z,z\right] \right) =0\) whenever \(0<z<r_{1}.\) Then

$$\begin{aligned} \Gamma \left( B\left( 0,r\right) \right) =0,\quad 0<r<r_{1},\quad \text {and}\quad \Gamma \left( B\left( 0,r\right) \right) \ge r>0,\quad r_{1}\le r<1. \end{aligned}$$

In consequence, \({\mathrm{supp\,}}\Gamma \subseteq B\left( 0,1\right) \setminus B^{0}\left( 0,r_{1}\right) \), where \(B^{0}\left( 0,r\right) \) denotes the open ball \(\{x\in \ell ^p : |x|_{p} < r \}\).

We leave to the reader further modifications of distributions \(G_{k},\)\(k\ge 1\), leading to a measure \(\Gamma =P\circ \xi ^{-1}\) such that \({\mathrm{supp\,}}\Gamma \subseteq B\left( 0,r_{2}\right) \setminus B^{0}\left( 0,r_{1}\right) \), where \(0<r_{1}<r_{2}<1\) (cf. remark preceding Sect. 3).

4 BRW in Banach Spaces of Martingale Cotype q

The main results given in Sect. 3 for spaces \(\ell ^{p}\) can be extended to Banach spaces of the same martingale cotype as \(\ell ^{p} .\) To this end, the first doubt that arises is the question of convergence of the Banach Random Walk (BRW) \( \left\{ Z_{n},n\ge 1\right\} \) in such Banach spaces. We discuss briefly this problem.

Let \(\mathbb {B}\) be a Banach space of martingale cotype q for some \(2\le q<\infty ,\) i.e., there exists a constant C such that for all \(\mathbb {B}\) -valued martingales \(\left\{ M_{n},n\ge 1\right\} \) in \(L^{q}\left( \mathbb { B}\right) ,\)

$$\begin{aligned} \sum \nolimits _{n\ge 1}E\left\| dM_{n}\right\| ^{q}\le C\sup \nolimits _{n\ge 1}E\left\| M_{n}\right\| ^{q}, \end{aligned}$$

where \(dM_{n}=M_{n}-M_{n-1}\) for \(n>1\) and \(dM_{1}=M_{1},\) see, e.g., [7], Ch. 6, p. 221, and [9], Def. 10.41. By Corollary 4.7, [8], or Corollary 10.7 of [9], there exists a norm \(\left| \cdot \right| \) equivalent to \(\left\| \cdot \right\| \) in \(\mathbb {B}\) such that for a fixed number \(\Delta >0,\)

$$\begin{aligned} \bigwedge \limits _{x,y\in \mathbb {B}}\quad \left| \frac{x+y}{2} \right| ^{q}+ \Delta \left| \frac{x-y}{2}\right| ^{q}\le \frac{ \left| x\right| ^{q}}{2}+\frac{\left| y\right| ^{q}}{2}, \end{aligned}$$

which can be rewritten in the form

$$\begin{aligned} \bigwedge \limits _{x,y\in \mathbb {B}}\quad 1-\left| \frac{x+y}{2} \right| \ge 1-\left( \frac{\left| x\right| ^{q}}{2}+\frac{ \left| y\right| ^{q}}{2}-\Delta \left| \frac{x-y}{2}\right| ^{q}\right) ^{1/q}. \end{aligned}$$

Therefore

$$\begin{aligned} \delta \left( \varepsilon \right) =\inf \left\{ 1-\left| \frac{x+y}{2} \right| :\left| x\right| \le 1,\left| y\right| \le 1,\left| x-y\right| \ge \varepsilon \right\} \ge 1-\left( 1-\Delta \left( \frac{\varepsilon }{2}\right) ^{q}\right) ^{1/q}. \end{aligned}$$

Hence it follows that the space \(\left( \mathbb {B},\left| \cdot \right| \right) \) is uniformly convex, cf. [7], Th. 6.2, or [9], Th. 10.1 and Prop. 10.31. Since each uniformly convex Banach space is reflexive, cf. Theorem 4.3 of [8], and Theorem 10.3 of [9], taking into account a result of Phillips we conclude that the space \(\left( \mathbb { B},\left| \cdot \right| \right) \) possesses the RNP, see [4], Ch. III, Sect. 2, Corollary 13, p. 76. Consequently, \((\mathbb {B}, \Vert \cdot \Vert )\) also enjoys the RNP.

Assume that \(\left\{ Z_{n},n\ge 1\right\} \) is a \(\mathbb {B}\)-valued BRW constructed by means of a quasi-orthogonal basis \(\left\{ b_{n},n\ge 1\right\} \) with respect to \(\Vert \cdot \Vert \). Applying Lemma 5 of [3] we infer that the BRW \(\left\{ Z_{n},n\ge 1\right\} \) converges strongly a.s. in \(\left( \mathbb {B} ,\Vert \cdot \Vert \right) \) and in \(L^{p}\left( \mathbb {B} ,\Vert \cdot \Vert \right) \) for each fixed \(1\le p<\infty .\) Now it is evident that all the results given in Sect. 2 are still valid for the Banach space \(\left( \mathbb {B},\left\| \cdot \right\| \right) ,\) and to generalize the results of Sect. 3 only a small effort is needed.

Having in mind the additional assumption: \(\left( \mathbb {B},\left\| \cdot \right\| \right) \) is of martingale cotype q\(2\le q<\infty ,\) we are able to describe convergence of the BRW \(\left\{ Z_{n},n\ge 1\right\} \) more precisely. Introduce a function \( \left\| \cdot \right\| _{(q)}:\mathbb {B\rightarrow }\left[ 0,\infty \right] \) given by the formula

$$\begin{aligned} \left\| x\right\| _{(q)}=\left( \sum \nolimits _{k\ge 1}\left\| x_{k}b_{k}\right\| ^{q}\right) ^{1/q}\quad \text {for}\quad x=\sum \nolimits _{k\ge 1}x_{k}b_{k}\in \mathbb {B}, \end{aligned}$$

and define \(\mathbb {B}_{q}=\left\{ x\in \mathbb {B}:\left\| x\right\| _{(q)}<\infty \right\} .\) It can be easily verified that \(\mathbb {B}_{q}\) is a linear space and \(\left\| \cdot \right\| _{(q)}\) is a norm in \(\mathbb {B} _{q}\). (The triangle condition follows from Minkowski’s inequality.) Obviously, \(\{b_n , n\ge 1\}\) is a quasi-orthogonal, monotone basis in \((\mathbb {B}_{q} , \left\| \cdot \right\| _{(q)} )\).

Let \(\widetilde{\mathbb {B}}_q\) denote the completion of \(\mathbb {B}_q\) under \(\Vert \cdot \Vert _{(q)}\). As was already noted, the assumptions imposed in [3] ensure that the BRW \( \left\{ Z_{n},n\ge 1\right\} \) converges a.s. in \(\left( \mathbb {B},\left\| \cdot \right\| \right) \) and in \(L^{p}\left( \mathbb {B} ,\left\| \cdot \right\| \right) \), \(1\le p<\infty \). Hence it follows that for each \(\varepsilon >0\) (and every fixed \(1\le p<\infty \)) there can be found \(n_{\varepsilon }\) such that for all \(m>n\ge n_{\varepsilon },\) we have \(\left\| \, \left\| Z_{m}-Z_{n}\right\| \, \right\| _{p}<\varepsilon ,\) where \(\left\| \cdot \right\| _{p}\) denotes the usual \(L^{p}\) norm. But for a fixed \(n\ge n_{\varepsilon },\)\(\left\{ Z_{m}-Z_{n},m\ge n\right\} \) is a martingale, thus in view of Theorem 4.51 [8], or Theorem 10.59 of [9], and the generalized Doob’s inequality, see Corollary 1.13 [8], or Corollary 1.29 [9], we obtain

$$\begin{aligned} \left\| \left( \sum \limits _{n<k\le m}\left\| dZ_{k}\right\| ^{q}\right) ^{1/q}\right\| _{p}\le & {} C\left\| \sup _{n<k\le m}\left\| Z_{k}-Z_{n}\right\| \right\| _{p}\\\le & {} C\left( p\right) \sup _{m>n}\left\| \left\| Z_{m}-Z_{n}\right\| \right\| _{p}\le C\left( p\right) \varepsilon \end{aligned}$$

whenever \(1<p<\infty .\) Consequently, the BRW \(\left\{ Z_{n},n\ge 1\right\} \) converges also in \(L^{p}\left( \widetilde{\mathbb {B}}_{q},\left\| \cdot \right\| _{(q)}\right) \) for all \(1<p<\infty .\) By Theorem 1.14 [8], see also Theorem 2.9 of [9], we conclude in addition that the process \(\left\{ Z_{n},n\ge 1\right\} \) converges a.s. in \(\left( \widetilde{ \mathbb {B}}_{q},\left\| \cdot \right\| _{(q)}\right) \). Therefore the BRW \(\left\{ Z_{n},n\ge 1\right\} \) converges a.s. in the space \(\mathbb {B} \cap \widetilde{\mathbb {B}}_q\) equipped with norm \(\Vert \cdot \Vert _{\max } = \max \{ \Vert \cdot \Vert , \Vert \cdot \Vert _{(q)}\}\).

Suppose next that a quasi-orthogonal basis \(\left\{ b_{n},n\ge 1\right\} \) in a Banach space \(\left( \mathbb {B},\left\| \cdot \right\| \right) \) is normalized so that \(\left\| b_{n}\right\| =1\) for all \(n\ge 1.\) Notice that then

$$\begin{aligned} \left\| x\right\| _{(q)}=\left( \sum \nolimits _{k\ge 1}\left| x_{k}\right| ^{q}\right) ^{1/q},\quad x=\sum \nolimits _{k\ge 1}x_{k}b_{k}\in \mathbb {B}. \end{aligned}$$

In such a case the spaces \(\left( \widetilde{\mathbb {B}}_{q},\left\| \cdot \right\| _{(q)}\right) \) and \(\ell ^{q}\) are isometrically isomorphic, and thus we may identify \(\widetilde{\mathbb {B}}_{q}\) with \(\ell ^{q}.\) Therefore the main results of Sect. 3, in particular Proposition 1 and Corollary 3, remain valid provided the space \(\ell ^{q}\) is replaced by \(\left( \widetilde{\mathbb {B}} _{q},\left\| \cdot \right\| _{(q)}\right) \). In this way we obtain the following result.

Theorem 3

Let \(\left( \mathbb {B},\left\| \cdot \right\| \right) \) be a Banach space of martingale cotype q for some \(2\le q<\infty ,\) with a quasi-orthogonal Schauder basis \(\left\{ b_{n},n\ge 1\right\} \) normalized so that \(\left\| b_{n}\right\| =1\), \(n\ge 1.\) Moreover, let \(\left\{ G_{n},n\ge 1\right\} \) be a sequence of symmetric probability distributions on the interval \(\left[ -1,1\right] \) satisfying conditions of Proposition 1 with p replaced by q. Then for a fixed \(0<r<1\), we have

$$\begin{aligned} \Gamma \left( B_{q}\left( 0,r\right) \right) \ge c_{r}>0, \end{aligned}$$

where \(B_{q}\left( 0,r\right) =\left\{ x\in \mathbb {B}: \left\| x\right\| _{(q)}\le r\right\} \), \(0<r<\infty ,\)\(\Gamma =P\circ \xi ^{-1},\) and \(\xi \) is the a.s. limit of the BRW \(\left\{ Z_{n},n\ge 1\right\} \) in \(\mathbb {B}\cap \widetilde{\mathbb {B}}_q\) generated by \(\left\{ G_{n},n\ge 1\right\} .\) Hence it follows that the whole mass of the measure \(\Gamma \) is not concentrated on the set \(S_{q}\left( 0,1\right) =\left\{ x\in \mathbb {B} :\left\| x\right\| _{(q)}=1\right\} .\)

As a consequence of this approach and Corollary 3 we get

Corollary 4

For every Banach space \(\left( \mathbb {B} ,\left\| \cdot \right\| \right) \) of martingale cotype \(2\le q<\infty ,\) with a quasi-orthogonal normalized Schauder basis \(\left\{ b_{n},n\ge 1\right\} ,\) there exists a Borel probability measure \(\Gamma \) with \({\mathrm{supp\,}}\Gamma = B_{q}\left( 0,1\right) ,\) such that \(\Gamma \left( S_{q}\left( 0,1\right) \right) =0\) and \(\Gamma \left( B_{q}\left( 0,r\right) \right) \ge r \) for all \(0<r<1. \)