Skip to main content
Log in

Couplings and Strong Approximations to Time-Dependent Empirical Processes Based on I.I.D. Fractional Brownian Motions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We define a time-dependent empirical process based on n i.i.d. fractional Brownian motions and establish Gaussian couplings and strong approximations to it by Gaussian processes. They lead to functional laws of the iterated logarithm for this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arcones, M.A.: On the law of the iterated logarithm for Gaussian processes. J. Theor. Probab. 8, 877–903 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berkes, I., Philipp, W.: Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7, 29–54 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berthet, P., Mason, D. M.: Revisiting two strong approximation results of Dudley and Philipp. High dimensional probability, IMS Lecture Notes Monogr. Ser., 51, Inst. Math. Statist., Beachwood, OH, 155–172 (2006)

  4. Borell, C.: The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30, 207–216 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dudley, R.M.: The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1, 290–330 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dudley, R.M.: Real Analysis and Probability. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA (1989)

    MATH  Google Scholar 

  7. Einmahl, U., Mason, D.M.: Gaussian approximation of local empirical processes indexed by functions. Probab. Theory Relat. Fields 107, 283–311 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Einmahl, U., Mason, D.M.: An empirical process approach to the uniform consistency of kernel-type function estimators. J. Theor. Probab. 13, 1–37 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kevei, P., Mason, D. M.: Strong approximations to time dependent empirical and quantile processes based on independent fractional Brownian motions, arXiv:1308.4939

  10. Komlós, J., Major, P., Tusnády, G.: An approximation of partial sums of independent rv’s and the sample df. I. Z. Wahrsch verw Gebiete 32, 111–131 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kosorok, M.R.: Introduction to empirical processes and semiparametric inference. Springer Series in Statistics. Springer, New York (2008)

    Book  MATH  Google Scholar 

  12. Kuelbs, J., Kurtz, T., Zinn, J.: A CLT for empirical processes involving time-dependent data. Ann. Probab. 41, 785–816 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuelbs, J., Zinn, J.: Empirical quantile-clts for time-dependent data. High Dimensional Probability VI, Banff, AB, 2011, Progr. in Probab., vol. 66, pp. 167–194 (2013)

  14. Kuelbs, J., Zinn, J.: Empirical quantile central limit theorems for some self-similar processes. J. Theoret. Probab. 28, 313–336 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Landau, H.J., Shepp, L.A.: On the supremum of a Gaussian process. Sankhyā Ser. A 32, 369–378 (1970)

    MathSciNet  MATH  Google Scholar 

  16. Ledoux, M., Talagrand, M.: Comparison theorems, random geometry and some limit theorems for empirical processes. Ann. Probab. 17, 596–631 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ledoux, M. and Talagrand, M.: Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 23, Springer-Verlag, Berlin (1991)

  18. LePage, R. D.: Log log law for Gaussian processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25, 103–108 (1972/73)

  19. Lifshits, M.A.: Gaussian random functions. Mathematics and its Applications, vol. 322. Kluwer Academic Publishers, Dordrecht (1995)

    Book  MATH  Google Scholar 

  20. Marcus, M. B., Shepp, L. A.: Sample behavior of Gaussian processes. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (University California, Berkeley, CA, 1970/1971), Vol. II: Probability theory, pp. 423–441. University California Press, Berkeley, CA, (1972)

  21. Philipp, W.: Invariance principles for independent and weakly dependent random variables. Dependence in probability and statistics (Oberwolfach, 1985), 225–268, Progr. Probab. Statist., 11, Birkhäuser Boston, Boston (1986)

  22. Satô, H.: A remark on Landau-Shepp’s theorem. Sankhyā Ser. A 33, 227–228 (1971)

    MathSciNet  MATH  Google Scholar 

  23. Swanson, J.: Weak convergence of the scaled median of independent Brownian motions. Probab. Theory Relat. Fields 138, 269–304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Talagrand, M.: Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22, 28–76 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. van der Vaart, A.W.: Asymptotic statistics. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 3. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  26. van der Vaart, A.W., Wellner, J.A.: Weak convergence and empirical processes. With applications to statistics. Springer Series in Statistics. Springer, New York (1996)

    MATH  Google Scholar 

  27. Wang, W.: On a functional limit result for increments of a fractional Brownian motion. Acta Math. Hungar. 93, 153–170 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zaitsev, AYu.: Estimates of the Lévy-Prokhorov distance in the multivariate central limit theorem for random variables with finite exponential moments. Theory Probab. Appl. 31, 203–220 (1987a)

    Article  Google Scholar 

  29. Zaitsev, AYu.: On the Gaussian approximation of convolutions under multidimensional analogues of S. N. Bernstein’s inequality conditions. Probab. Theory Relat. Fields 74, 534–566 (1987b)

    Article  MathSciNet  Google Scholar 

  30. Zaitsev, AYu.: The accuracy of strong Gaussian approximation for sums of independent random vectors Russian Math. Surveys 68, 721–761 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the Associate Editor for a comment that led to Remark 1. PK was partially supported by the Hungarian Scientific Research Fund OTKA PD106181, by the European Union and co-funded by the European Social Fund under the project ‘Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences’ of project number TÁMOP-4.2.2.A-11/1/KONV-2012-0073, and by a postdoctoral fellowship of the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Kevei.

Appendix

Appendix

1.1 A Gaussian Coupling Inequality

Einmahl and Mason [7] pointed out in their Fact 2.2 that the Strassen–Dudley theorem (see Theorem 11.6.2 in Dudley [6]) in combination with a special case of Theorem 1.1 of Zaitsev [28] (also see the discussion after its statement) yields the following Gaussian coupling. Here \(\left| \cdot \right| _{N}\), \(N\ge 1\), denotes the usual Euclidean norm on \({\mathbb {R}}^{N}\).

Coupling inequality

Let \(Y_{1},\ldots ,Y_{n}\) be independent mean zero random vectors in \({\mathbb {R}}^{N}\), \(N\ge 1\), such that for some \(b>0\),

$$\begin{aligned} \left| Y_{i}\right| _{N}\le b,\quad i=1,\dots ,n. \end{aligned}$$

If \((\varOmega , {\mathcal {T}}, P)\) is rich enough, then for each \(\delta >0\), one can define independent normally distributed mean zero random vectors \( Z_{1},\ldots ,Z_{n}\) with \(Z_{i}\) and \(Y_{i}\) having the same covariance matrix for \(i=1,\ldots ,n\), such that for universal constants \(C_{1}>0\) and \( C_{2}>0\),

$$\begin{aligned} P\left\{ \left| \sum _{i=1}^{n}\left( Y_{i}-Z_{i}\right) \right| _{N}>\delta \right\} \le C_{1}N^{2}\exp \left( -\frac{C_{2}\delta }{N^{2}b} \right) . \end{aligned}$$
(77)

Remark 7

Actually, Einmahl and Mason did not specify the \(N^{2}\) in (77) and they applied a less precise result given Theorem 1.1 in [29] with \(N^{2}\) replaced by \(N^{5/2}\); however, their argument is equally valid when based upon Theorem 1.1 in [28]. Zaitsev [28] remarks that the assumptions of Theorem 1.1 of [29] imply those of Theorem 1.1 of [28]. See, in particular, the paragraph right above Remark 1.1 in [28]. Also see equation (18) in [30].

1.2 Pointwise Measurable Classes

Definition

A class \({\mathcal {G}}\) of measurable real-valued functions defined on a measurable space \(\left( S,{\mathcal {S}} \right) \) is pointwise measurable if there exists a countable subclass \({\mathcal {G}}_{\infty }\) of \({\mathcal {G}}\) such that we can find for any function \(f\in {\mathcal {G}}\) a sequence of functions \(\{f_{m}\}\) in \( {\mathcal {G}}_{\infty }\) for which \(\lim _{m\rightarrow \infty }f_{m}(x)=f(x)\) for all \(x\in S\). For more about pointwise measurability, see pages 109–110 and Example 2.3.4 of van der Vaart and Wellner [26], as well as Section 8.2 of Kosorok [11].

We shall show here that the classes of functions \({\mathcal {F}}\left( K,\gamma \right) \), \(K\ge 1\), of the form (28), where \(0\le \gamma <1<T<\infty \), are pointwise measurable. Let \({\mathbb {Q}}\) denote the set of rational numbers. For any \(K\ge 1\), consider the countable class \({\mathcal {F}}_{\infty ,K}\) of functions of \(g\in {\mathcal {C}}\left[ 0,T\right] \rightarrow \left\{ 0,1\right\} \) indexed by \(u,v\in \left[ \gamma ,T\right] \cap \mathbb {Q\cup }\left\{ \gamma ,T\right\} , y\in {\mathbb {Q}}\) defined by

$$\begin{aligned} 1\left\{ g\left( v\right) -Kf_{H}(\left| v-u\right| )\le y,\ g\in {\mathcal {C}}\left( K\right) \right\} , \end{aligned}$$

where \({\mathcal {C}}\left( K\right) \) is as in (27). Clearly for each \(\left( t,x\right) \in {\mathcal {T}}(\gamma )=\left[ \gamma ,T\right] \times {\mathbb {R}}\), we can choose sequences \(s_{m}\) and \(t_{m}\in \left[ \gamma ,T\right] \cap {\mathbb {Q\cup }}\left\{ \gamma ,T\right\} \) such that \(t_{m}\searrow t\) and \(s_{m}\nearrow t\). Also we can select a sequence \(y_{m}\in {\mathbb {Q}}\searrow x\). We see that each

$$\begin{aligned} 1\left\{ g\left( t_{m}\right) -Kf_{H}(\left| t_{m}-s_{m}\right| )\le y_{m},g\in {\mathcal {C}}\left( K\right) \right\} \in {\mathcal {F}}_{\infty ,K}. \end{aligned}$$

Moreover, if \(g\in {\mathcal {C}}\left( K\right) \), then \(g\left( t_{m}\right) -Kf_{H}(\left| t_{m}-s_{m}\right| )\le g\left( t\right) \) and \(g\left( t_{m}\right) -Kf_{H}(\left| t_{m}-s_{m}\right| )\rightarrow g\left( t\right) \). Thus if \(g\left( t\right) \le x\) and \(g\in {\mathcal {C}}\left( K\right) \), then

$$\begin{aligned} 1\left\{ g\left( t_{m}\right) -Kf_{H}(\left| t_{m}-s_{m}\right| )\le y_{m},g\in {\mathcal {C}}\left( K\right) \right\} =1\rightarrow 1=h_{t,x}^{\left( K\right) }\left( g\right) , \end{aligned}$$

whereas if \(g\left( t\right) >x\), then for some \(\delta >0\), \(g\left( t\right) >x+\delta \) and all large enough m,

$$\begin{aligned} g\left( t_{m}\right) -Kf_{H}(\left| t_{m}-s_{m}\right| )>x+\delta /2 \text { and }x+\delta /4>y_{m}. \end{aligned}$$

This says that eventually \(g\left( t_{m}\right) -Kf_{H}(\left| t_{m}-s_{m}\right| )>y_{m}\) and thus

$$\begin{aligned} 1\left\{ g\left( t_{m}\right) -Kf_{H}(\left| t_{m}-s_{m}\right| )\le y_{m},g\in {\mathcal {C}}\left( K\right) \right\} =0=h_{t,x}^{\left( K\right) }\left( g\right) . \end{aligned}$$

Hence \({\mathcal {F}}\left( K,\gamma \right) \) is pointwise measurable with countable subclass \({\mathcal {F}}_{\infty ,K}\).

For any \(\kappa >0\) and \(K\ge 1\), let \({\mathcal {G}}\left( \kappa ,K\right) \) denote the class of functions \(g\in {\mathcal {C}}\left[ 0,T\right] \rightarrow \left[ 0,T^{\kappa }\right] \) indexed by \(\left( t,x\right) \in {\mathcal {T}} \left( 0\right) =\left[ 0,T\right] \times {\mathbb {R}}\) defined by

$$\begin{aligned} t^{\kappa }h_{t,x}^{\left( K\right) }\left( g\right) =t^{\kappa }1\left\{ g\left( t\right) \le x,g\in {\mathcal {C}}\left( K\right) \right\} . \end{aligned}$$
(78)

Clearly by a slight modification of the above argument, \({\mathcal {G}}\left( \kappa ,K\right) \) is pointwise measurable.

1.3 Inequalities for Empirical Processes

In this subsection, \({\mathcal {G}}\) is a pointwise measurable class of measurable real-valued functions defined on a measurable space \(\left( S,{\mathcal {S}}\right) \). For any \(0<\sigma <1\), set

$$\begin{aligned} J\left( \sigma ,{\mathcal {G}}\right) =\int _{\left[ 0,\sigma \right] } \sqrt{1+\log N_{[\;]}(s,{\mathcal {G}},d_{P})}\,ds \end{aligned}$$
(79)

and

$$\begin{aligned} a\left( \sigma ,{\mathcal {G}}\right) =\sigma \left[ 1+\log N_{[\;]}(\sigma , {\mathcal {G}},d_{P})\right] ^{-1/2}. \end{aligned}$$
(80)

Lemma 19.34 in van der Vaart [25] gives the following moment bound. (Note the needed “\(+1\)” in the definition of \(J(\sigma ,{\mathcal {G}})\) and \(a\left( \sigma ,{\mathcal {G}} \right) \).)

Moment inequality

Let \(\xi ,\xi _{1},\ldots ,\xi _{n}\) be i.i.d. and assume that \({\mathcal {G}}\) has a measurable envelope function G and \(E\left( g^{2}\left( \xi \right) \right) <\sigma ^{2}<1\) for every \(g\in {\mathcal {G}}\). We have, for a universal constant \(A_{0}^{\prime }\),

$$\begin{aligned} \begin{array}{lll} &{}\displaystyle E \left\| \frac{1}{\sqrt{n}} \sum _{i=1}^{n} \left( g(\xi _{i})-Eg(\xi _{i}) \right) \right\| _{{\mathcal {G}}} \\ &{}\displaystyle \quad \le A_{0}^{\prime } \left[ J\left( \sigma ,{\mathcal {G}}\right) + \sqrt{n} \, E\left( G\left( \xi \right) 1\left\{ G\left( \xi \right) >\sqrt{n} a(\sigma , {\mathcal {G}}) \right\} \right) \right] . \end{array} \end{aligned}$$
(81)

Let \(\epsilon \) be a Rademacher variable, i.e., \(P\{\epsilon =1\}=P\{\epsilon =-1\}=1/2\), and consider independent Rademacher variables \(\epsilon _{1},\ldots ,\epsilon _{n}\) independent of \(\xi _{1}\), \(\ldots ,\xi _{n}\). From a special case of a well-known symmetrization lemma, we have for any class of functions \({\mathcal {G}}\) in \(L_{1}\left( P\right) \)

$$\begin{aligned} \frac{1}{2} E\Big \Vert \sum _{i=1}^{n} \epsilon _{i} \big ( g(\xi _i) - Eg(\xi ) \big ) \Big \Vert _{{\mathcal {G}}} \le E \Big \Vert \sum _{i=1}^{n} \big ( g(\xi _{i})-Eg(\xi ) \big ) \Big \Vert _{{\mathcal {G}}} \le 2 E \Big \Vert \sum _{i=1}^{n} \epsilon _i g(\xi _{i}) \Big \Vert _{{\mathcal {G}}}. \end{aligned}$$

(See Lemma 6.3 of Ledoux and Talagrand [17].) In particular, we get

$$\begin{aligned} E\left\| \sum _{i=1}^{n}\epsilon _{i}g(\xi _{i})\right\| _{{\mathcal {G}} }\le & {} E\left\| \sum _{i=1}^{n}\epsilon _{i}\left( g(\xi _{i})-Eg\left( \xi \right) \right) \right\| _{{\mathcal {G}}}+E\left| \sum _{i=1}^{n} {\mathbb {\epsilon }}_{i}\right| \left\| Eg\left( \xi \right) \right\| _{{\mathcal {G}}} \nonumber \\\le & {} 2E\left\| \sum _{i=1}^{n}\left( g(\xi _{i})-Eg\left( \xi \right) \right) \right\| _{{\mathcal {G}}}+\sigma \sqrt{n}. \end{aligned}$$

Thus, we readily get from (81) with \(A_{0}=2A_{0}^{\prime } +1\) and noting that the integrand of \(J\left( \sigma ,{\mathcal {G}}\right) \) is greater than or equal to 1,

$$\begin{aligned} \begin{array}{lll} &{}\displaystyle E \left\| \frac{1}{\sqrt{n}} \sum _{i=1}^{n} \epsilon _{i} g(X_{i}) \right\| _{{\mathcal {G}}} \\ &{}\quad \displaystyle \le A_{0}\left[ J( \sigma ,{\mathcal {G}}) +\sqrt{n} \, E\left( G ( \xi ) 1\left\{ G\left( \xi \right) >\sqrt{n}\, a(\sigma ,{\mathcal {G}})\right\} \right) \right] . \end{array} \end{aligned}$$
(82)

We shall be using the moment bound (82) in conjunction with the following exponential inequality due to Talagrand [24]. This maximal version is pointed out by Einmahl and Mason [8, Inequality A.1 on p. 31].

Talagrand inequality

Let \({\mathcal {G}}\) be a pointwise measurable class of measurable real-valued functions defined on a measurable space \((S,{\mathcal {S}})\) satisfying \(||g||_{\infty }\le M,\ g\in {\mathcal {G}}\), for some \(0<M<\infty \). Let \(X,X_{n}\), \(n\ge 1\), be a sequence of i.i.d. random variables defined on a probability space \(\left( \varOmega ,{\mathcal {A}},P\right) \) and taking values in S, then for all \(t>0\) we have for suitable finite constants \(A,A_{1}>0\),

$$\begin{aligned} \begin{array}{lll} &{}\displaystyle P\left\{ \max _{1\le m\le n}||\sqrt{m}\alpha _{m}||_{{\mathcal {G}}}\ge A\left( E \Big \Vert \sum _{i=1}^{n}\epsilon _{i}g(X_{i}) \Big \Vert _{{\mathcal {G}}}+t\right) \right\} \\ &{}\displaystyle \quad \le 2 \exp \left( -\frac{A_{1}t^{2}}{n\sigma _{{\mathcal {G}}}^{2}}\right) +2\exp \left( -\frac{A_{1}t}{M}\right) , \end{array} \end{aligned}$$
(83)

where \(\sigma _{{\mathcal {G}}}^{2}=\sup _{g\in {\mathcal {G}}}\mathop {Var}(g(X))\).

1.4 Inequalities for Gaussian Processes

Let \({\mathbb {Z}}\) be a separable mean zero Gaussian process on a probability space \((\varOmega ,{\mathcal {A}},P)\) indexed by a set \({\mathbb {T}}\), equipped with a semimetric

$$\begin{aligned} \rho \left( s,t\right) =\sqrt{E \left( {\mathbb {Z}}\left( t\right) -{\mathbb {Z}} \left( s\right) \right) ^{2}}. \end{aligned}$$
(84)

For each \(\varepsilon >0\), let \(N\left( \varepsilon ,{\mathbb {T}},\rho \right) \) denote the minimal number of \(\rho \) balls of radius \(\varepsilon \) needed to cover \({\mathbb {T}}.\) Write \(\left\| {\mathbb {Z}}\right\| _{{\mathbb {T}} }=\sup _{t\in {\mathbb {T}}}\left| {\mathbb {Z}}_{t}\right| \) and \(\sigma _{ {\mathbb {T}}}^{2}\left( {\mathbb {Z}}\right) =\sup _{t\in {\mathbb {T}}}E\left( {\mathbb {Z}}_{t}^{2}\right) \).

According to Dudley [5], the entropy condition

$$\begin{aligned} \int _{\left[ 0,1\right] }\sqrt{\log N\left( \varepsilon ,{\mathbb {T}},\rho \right) }\,d\varepsilon <\infty \end{aligned}$$
(85)

ensures the existence of a separable, bounded, \(\rho \) uniformly continuous modification of \({\mathbb {Z}}\). The following moment bound is a version of Corollary 2.2.8 in van der Vaart and Wellner [26]. (Also see their Problem 2.2.14.)

Gaussian moment inequality

For some universal constant \(A_{4}>0\) and all \(\sigma >0\), we have

$$\begin{aligned} E\left( \sup _{\rho \left( s,t\right) <\sigma }\left| {\mathbb {Z}}_{t}- {\mathbb {Z}}_{s}\right| \right) \le A_{4}\int _{\left[ 0,\sigma \right] } \sqrt{\log N\left( \varepsilon ,{\mathbb {T}},\rho \right) }\,d\varepsilon \end{aligned}$$
(86)

and for any \(t_{0}\in {\mathbb {T}}\),

$$\begin{aligned} E\left( \left\| {\mathbb {Z}}\right\| _{{\mathbb {T}}}\right) \le E\left| {\mathbb {Z}}_{t_{0}}\right| +A_{4}\int _{\left[ 0,{\mathbb {D}} \right] }\sqrt{\log N\left( \varepsilon ,{\mathbb {T}},\rho \right) } \,d\varepsilon , \end{aligned}$$
(87)

with

$$\begin{aligned} {\mathbb {D}}=\sup _{s,t\in {\mathbb {T}}}\rho \left( s,t\right) \end{aligned}$$
(88)

denoting the diameter of \({\mathbb {T}}\).

Notice that if d is a semimetric on \({\mathbb {T}}\) such that for all \(s,t\in T\), \(d\left( s,t\right) \ge \rho \left( s,t\right) \), then

$$\begin{aligned} \sup _{\left\{ s:\rho \left( s,t\right) <\sigma \right\} }\left| \mathbb {Z }_{t}-{\mathbb {Z}}_{s}\right| \ge \sup _{\left\{ s:\text { }d\left( s,t\right) <\sigma \right\} }\left| {\mathbb {Z}}_{t}-{\mathbb {Z}} _{s}\right| \end{aligned}$$

and \(N\left( \varepsilon ,{\mathbb {T}},d\right) \ge N\left( \varepsilon , {\mathbb {T}},\rho \right) \). Thus,

$$\begin{aligned} \int _{\left[ 0,1\right] }\sqrt{\log N\left( \varepsilon ,{\mathbb {T}},d\right) }\,d\varepsilon <\infty \end{aligned}$$
(89)

implies by the Dudley result the existence of a separable, bounded, d uniformly continuous modification of \({\mathbb {Z}}\). (Here note that \(\rho \) uniformly continuous implies d uniformly continuous.) Moreover, the moment inequalities in (86) and (87) hold when \(\rho \) is replaced by d and in the definition of \({\mathbb {D}}.\)

In particular, these inequalities hold when \({\mathbb {Z}}={\mathbb {G}} _{(\gamma ,T)}\), the Gaussian process defined at the end of Subsect. 2.1, where \({\mathbb {T}}={\mathcal {F}}_{(\gamma ,T)}\) and \(d=d_{P}\) is as defined in (11), and \({\mathbb {D}}=\sup \left\{ d_P \left( f,g\right) : f,g\in \mathcal { F}_{(\gamma ,T)}\right\} \) is the diameter \({\mathbb {D}}\) of \({\mathbb {T}}= {\mathcal {F}}_{(\gamma ,T)}\).

The following large deviation probability estimate for \(\left\| {\mathbb {Z}} \right\| _{{\mathbb {T}}}\) is due to Borell [4]. (Also see Proposition A.2.1 in [26].) Let \(M\left( X\right) \) denote the a median of \(\left\| {\mathbb {Z}}\right\| _{{\mathbb {T}}}\), i.e., \( P\left\{ \left\| {\mathbb {Z}}\right\| _{{\mathbb {T}}}\ge M\left( X\right) \right\} \ge 1/2\) and \(P\left\{ \left\| {\mathbb {Z}}\right\| _{{\mathbb {T}} }\le M\left( X\right) \right\} \ge 1/2\). We shall assume that \(M\left( X\right) \) is finite.

Borell’s inequality

For all \(z>0\),

$$\begin{aligned} P\left\{ \left| \left\| {\mathbb {Z}}\right\| _{{\mathbb {T}}}-E\left( \left\| {\mathbb {Z}}\right\| _{{\mathbb {T}}}\right) \right| >z\right\} \le 2\exp \left( -\frac{z^{2}}{2\sigma _{{\mathbb {T}}}^{2}\left( {\mathbb {Z}} \right) }\right) . \end{aligned}$$
(90)

1.4.1 Application of the Landau–Shepp Theorem

We shall be using the following version of the Landau and Shepp [LS] [15] theorem (also see Sato [22], Theorem 2.5 of Marcus and Shepp [20] and Proposition A.2.3 in [26]):

Theorem [LS]

Let \(X_{t},t\in T,\) be a real-valued separable Gaussian process such that w.p. 1, \(\sup _{t\in T}\left| X_{t}\right| <\infty \), then for any \(0<\beta <1/\left( 2\sigma ^{2}\right) \), where \(\sigma ^{2}=\sup _{t\in T}\mathop {Var}\left( X_{t}\right) \), for all y sufficiently large

$$\begin{aligned} P\left\{ \sup _{t\in T}\left| X_{t}\right| >y\right\} <\exp \left( -\beta y^{2}\right) . \end{aligned}$$
(91)

Recall the definition of L in (4). Since L is finite, w.p. 1, we can apply the Landau and Shepp theorem to infer that for appropriate constants \(C>0\) and \(D>0\), for all \(t>0,\)

$$\begin{aligned} P\left\{ L>t\right\} \le C\exp \left( -Dt^{2}\right) . \end{aligned}$$
(92)

1.5 Four Maximal Inequalities

For the following inequalities, recall the mean zero Gaussian process G with covariance function defined in (7). Inequalities 1 and 2 are required for the proof of Proposition 2, and Inequalities 1A and 2A are needed in the proofs of Theorems 1 and 2.

Inequality 1

For all \(0<\varrho <\infty \) and \(\delta >0\), we have for some constant \(\mu (\delta )\) and all \(z>0\)

$$\begin{aligned} P\left\{ \sup _{(t,x)\in [0,\varrho ]\times {\mathbb {R}}}t^{\delta }\left| G\left( t,x\right) \right| >\varrho ^{\delta }2^{\delta }\mu \left( \delta \right) +z\right\} \le 2\exp \left( -\frac{z^{2}\varrho ^{-2\delta }}{2^{2\delta +1}}\right) \end{aligned}$$
(93)

and for each \(n\ge 1\) and for \(t^{\delta }G^{\left( 1\right) }\left( t,x\right) ,\dots , t^{\delta }G^{\left( n\right) }\left( t,x\right) \) i.i.d. \(t^{\delta } G\left( t,x\right) \)

$$\begin{aligned} \begin{array}{ll} &{} P\left\{ \max _{1\le m\le n} \sup _{(t,x) \in [0,\varrho ]\times {\mathbb {R}}} \left| \frac{1}{\sqrt{n}}\sum _{i=1}^{m}t^{\delta }G^{\left( i\right) } \left( t,x\right) \right| > \varrho ^{\delta } 2^{\delta }\mu \left( \delta \right) +z\right\} \\ &{}\quad \le 4\exp \left( -\frac{z^{2}\varrho ^{-2\delta }}{2^{2\delta +1}}\right) . \end{array} \end{aligned}$$
(94)

Proof

Define for any integer \(k\ge 0\),

$$\begin{aligned} {\mathcal {T}}_{k}=\left[ 2^{-k},2^{-k+1}\right] \times {\mathbb {R}}. \end{aligned}$$

Theorem 5 in [12] implies that, w.p. 1, for each integer k,

$$\begin{aligned} \sup \left\{ \left| G\left( t,x\right) \right| :\left( t,x\right) \in {\mathcal {T}}_{k}\right\} <\infty . \end{aligned}$$
(95)

Notice that for any \(k\ge 0\)

$$\begin{aligned} \sup \left\{ \left| G\left( t,x\right) \right| :\left( t,x\right) \in {\mathcal {T}}_{k}\right\} \overset{\mathrm {D}}{=}\sup \left\{ \left| G\left( t,x\right) \right| :\left( t,x\right) \in {\mathcal {T}} _{0}\right\} . \end{aligned}$$

Furthermore, (95) and separability of \(G\left( t,x\right) \) permit us to apply the Landau–Shepp theorem (see (91)) to get

$$\begin{aligned} \mu _{0}:=E\left( \sup \left\{ \left| G\left( t,x\right) \right| :\left( t,x\right) \in {\mathcal {T}}_{0}\right\} \right) <\infty . \end{aligned}$$

Thus for any integer K

$$\begin{aligned}&E\left( \sup \left\{ t^{\delta }\left| G\left( t,x\right) \right| :\left( t,x\right) \in \left[ 0,2^{-K}\right] \times {\mathbb {R}}\right\} \right) \\&\quad \le \mu _{0}\sum _{k=K}^{\infty }2^{-\delta k}=2^{-\delta K}\mu _{0}/\left( 1-2^{-\delta }\right) =:2^{-\delta K}\mu \left( \delta \right) . \end{aligned}$$

This implies that, w.p. 1,

$$\begin{aligned} \sup \left\{ t^{\delta }\left| G\left( t,x\right) \right| :\left( t,x\right) \in \left[ 0,2^{-K}\right] \times {\mathbb {R}}\right\} <\infty . \end{aligned}$$

Also

$$\begin{aligned} \sup \left\{ \mathop {Var}\left( t^{\delta }G\left( t,x\right) \right) :\left( t,x\right) \in \left[ 0,2^{-K}\right] \times {\mathbb {R}}\right\} \le 2^{-2\delta K}. \end{aligned}$$

Applying Borell’s inequality (90) with \({\mathbb {Z}}\left( t,x\right) =t^{\delta }G\left( t,x\right) \), \({\mathbb {T}}=\left[ 0,2^{-K}\right] \times {\mathbb {R}}\), \(E\left( \left\| {\mathbb {Z}}\right\| _{{\mathbb {T}}}\right) \le 2^{-\delta K}\mu \left( \delta \right) \) and \(\sigma _{{\mathbb {T}} }^{2}\left( {\mathbb {Z}}\right) \le 2^{-2\delta K}\), we get for all \(z>0\) and integers K

$$\begin{aligned} P\left\{ \sup _{(t,x)\in [0,2^{-K}]\times {\mathbb {R}}}t^{\delta }\left| G\left( t,x\right) \right| >2^{-\delta K}\mu \left( \delta \right) +z\right\} \le 2\exp \left( -\frac{z^{2}2^{2\delta K}}{2}\right) . \end{aligned}$$

Choose any \(0<\varrho <\infty \) and integer K such that \(2^{-K}\ge \varrho >2^{-K-1}.\) We see that

$$\begin{aligned} 2^{K+1}>\varrho ^{-1}\ge 2^{K}\ge \varrho ^{-1}/2. \end{aligned}$$

Hence, \(\left[ 0,\varrho \right] \times {\mathbb {R}}\subset \left[ 0,2^{-K} \right] \times {\mathbb {R}}\). Therefore,

$$\begin{aligned}&P\left\{ \sup \left\{ t^{\delta }\left| G\left( t,x\right) \right| :\left( t,x\right) \in \left[ 0,\varrho \right] \times {\mathbb {R}}\right\} >\varrho ^{\delta }2^{\delta }\mu \left( \delta \right) +z\right\} \\&\quad \le P\left\{ \sup \left\{ t^{\delta }\left| G\left( t,x\right) \right| :\left( t,x\right) \in \left[ 0,2^{-K}\right] \times {\mathbb {R}} \right\} >2^{-\delta K}\mu \left( \delta \right) +z\right\} \\&\quad \le 2\exp \left( -\frac{z^{2}2^{2\delta K}}{2}\right) \le 2\exp \left( - \frac{z^{2}\varrho ^{-2\delta }}{2^{2\delta +1}}\right) . \end{aligned}$$

Inequality (94) follows from Lévy’s inequality (see Proposition A.1.2 in van der Vaart and Wellner [26]) along with separability of the Gaussian process \(t^{\delta }G\left( t,x\right) \). \(\square \)

Inequality 1A

For all \(0<\gamma <1<T<\infty \), we have for some constant \(\mu \) and all \(z>0\)

$$\begin{aligned} P\left\{ \sup _{(t,x)\in {\mathcal {T}}\left( \gamma \right) }\left| G\left( t,x\right) \right| >\mu +z\right\} \le 2\exp \left( -\frac{z^{2}}{2} \right) \end{aligned}$$
(96)

and for each \(n\ge 1\) and \(G^{\left( 1\right) }\left( t,x\right) ,\dots ,G^{\left( n\right) }\left( t,x\right) \) i.i.d. \(G\left( t,x\right) \)

$$\begin{aligned} P\left\{ \max _{1\le m\le n}\sup _{((t,x)\in {\mathcal {T}}\left( \gamma \right) }\left| \frac{1}{\sqrt{n}}\sum _{i=1}^{m}G^{\left( i\right) }\left( t,x\right) \right| >\mu +z\right\} \le 4\exp \left( -\frac{z^{2} }{2}\right) . \end{aligned}$$
(97)

Proof

Theorem 5 in [12] implies that, w.p. 1,

$$\begin{aligned} \sup \left\{ \left| G\left( t,x\right) \right| :\left( t,x\right) \in {\mathcal {T}}\left( \gamma \right) \right\} <\infty . \end{aligned}$$
(98)

Furthermore, (98) permits us to apply the Landau–Shepp theorem to get

$$\begin{aligned} \mu :=E\left( \sup \left\{ \left| G\left( t,x\right) \right| :\left( t,x\right) \in {\mathcal {T}}\left( \gamma \right) \right\} \right) <\infty . \end{aligned}$$

Also

$$\begin{aligned} \sup \left\{ \mathop {Var}\left( G\left( t,x\right) \right) :(t,x)\in {\mathcal {T}}(\gamma ) \right\} \le 1. \end{aligned}$$

Applying Borell’s inequality (90) with \({\mathbb {Z}} (t,x) = G (t,x)\), \({\mathbb {T}}={\mathcal {T}}(\gamma )\), \(E \left\| {\mathbb {Z}}\right\| _{{\mathbb {T}}} =\mu \) and \(\sigma _{{\mathbb {T}}}^{2}\left( {\mathbb {Z}}\right) \le 1\), we get for all \(z>0\)

$$\begin{aligned} P\left\{ \sup _{(t,x)\in {\mathcal {T}}\left( \gamma \right) }\left| G\left( t,x\right) \right| >\mu +z\right\} \le 2\exp \left( -\frac{z^{2}}{2} \right) . \end{aligned}$$

Inequality (97) follows from Lévy’s inequality and separability of the Gaussian process \(G\left( t,x\right) \). \(\square \)

In Inequalities 2 and 2A for \(g \in c[0, T ]\),

$$\begin{aligned} h_{t,x} (g) = 1 \{g(t)\le x, g \in c_{\infty }\}, \end{aligned}$$

where \(C_{\infty }\) is defined as in (10).

Inequality 2

For all \(0<\varrho <T/2\) and \( \delta >0\), we have for some \(E(\delta )\) and for suitable finite positive constants \(A, A_{1}>0\), for all \(z>0\)

$$\begin{aligned} {\begin{matrix} &{} P\left\{ \max _{1\le m\le n}\sup _{(t,x)\in [0,\varrho ]\times {\mathbb {R}}}|\sqrt{m}t^{\delta }\alpha _{m}\left( h_{t,x}\right) |>\sqrt{n} A\left( E(\delta )2^{\delta }\varrho ^{\delta }+z\right) \right\} \\ &{}\quad \le 2\left\{ \exp \left( -z^{2}A_{1}\left( 2\varrho \right) ^{-2\delta }\right) +\exp \left( -z\sqrt{n}A_{1}\left( 2\varrho \right) ^{-\delta }\right) \right\} . \end{matrix}} \end{aligned}$$
(99)

Note, in particular, Inequality 2 implies that for all \(\lambda >1\) there is a \(d>1\) such that

$$\begin{aligned} P\left\{ \sup \left\{ |t^{\delta }\alpha _{n}\left( h_{t,x}\right) |:\left( t,x\right) \in \left[ 0,\varrho \right] \times {\mathbb {R}}\right\} \ge d\varrho ^{\delta }\sqrt{\log n}\right\} <n^{-\lambda }. \end{aligned}$$
(100)

Proof

For any \(k\ge 1\) and \(g\in {\mathcal {C}}\left[ 0,T\right] \), let

$$\begin{aligned} g_{k}\left( t\right) =2^{kH}g\left( t2^{-k}\right) ,\ t\in \left[ 0,T \right] , \end{aligned}$$

and for any \(k\ge 1\), \(t\in \left[ 0,T \right] \), \(x\in {\mathbb {R}}\) and \(g\in {\mathcal {C}}\left[ 0,T \right] \) set

$$\begin{aligned} h_{t,x,k}\left( g\right) =h_{t,x}\left( g_{k}\right) =1\left\{ g_{k}\left( t\right) \le x, g_k \in C_{\infty }\right\} . \end{aligned}$$

Clearly w.p. 1

$$\begin{aligned} \sup _{(t,x)\in {\mathcal {T}}_{k}}\left| \sum _{i=1}^{n}\epsilon _{i}h_{t,x}(B_{i}) \right| =\sup _{(t,x)\in {\mathcal {T}}_{0}}\left| \sum _{i=1}^{n}\epsilon _{i}h_{t,x,k}(B_{i})\right| . \end{aligned}$$

Moreover, since

$$\begin{aligned} \left\{ B_{j}\right\} _{j\ge 1}\overset{\mathrm {D}}{=}\left\{ 2^{kH}B_{j}\left( \cdot /2^{k}\right) \right\} _{j\ge 1}, \end{aligned}$$

we see that

$$\begin{aligned} \sup _{(t,x)\in {\mathcal {T}}_{k}}\left| \sum _{i=1}^{n}\epsilon _{i}h_{t,x,k}(B_{i})\right| \overset{\mathrm {D}}{=}\sup _{(t,x)\in {\mathcal {T}}_{0}}\left| \sum _{i=1}^{n}\epsilon _{i}h_{t,x}(B_{i})\right| \end{aligned}$$

and thus

$$\begin{aligned} E\sup _{(t,x)\in {\mathcal {T}}_{k}}\left| \sum _{i=1}^{n}\epsilon _{i}h_{t,x}(B_{i})\right| =E\sup _{(t,x)\in {\mathcal {T}}_{0}}\left| \sum _{i=1}^{n}\epsilon _{i}h_{t,x}(B_{i})\right| . \end{aligned}$$
(101)

We readily see by inequality (82)

$$\begin{aligned} E\sup _{(t,x)\in {\mathcal {T}}_{0}}\left| \sum _{i=1}^{n}\epsilon _{i}h_{t,x}(B_{i})\right| \le 2\sqrt{n}E\left\| v_{n}\right\| _{ {\mathcal {T}}_{0}}+ \sqrt{n}, \end{aligned}$$

which by (9) is \(\le 2\left( M\left( 1,2,H\right) +1\right) \sqrt{n} =:E_{0}\sqrt{n}.\) Thus

$$\begin{aligned} E\sup _{(t,x)\in {\mathcal {T}}_{0}}\left| \sum _{i=1}^{n}\epsilon _{i}h_{t,x}(B_{i})\right| \le E_{0}\sqrt{n}. \end{aligned}$$
(102)

Next, for all \(\delta >0\) with K an integer such that \(2^{-{K}}\ge \varrho >2^{-{K}-1}\)

$$\begin{aligned} E\sup \left\{ \left| t^{\delta }\sum _{i=1}^{n}\epsilon _{i}h_{t,x}(B_{i})\right| :0\le t\le 2^{-K},x\in {\mathbb {R}}\right\} \end{aligned}$$

is by (101) and (102)

$$\begin{aligned} \le \sum _{k=K}^{\infty }2^{-k\delta }E\sup _{(t,x)\in {\mathcal {T}} _{k}}\left| \sum _{i=1}^{n}\epsilon _{i}h_{t,x}(B_{i})\right| \le E\left( \delta \right) 2^{-K\delta }\sqrt{n\,}, \end{aligned}$$
(103)

where \(E\left( \delta \right) =E_{0}/\left( 1-2^{-\delta }\right) \).

Let

$$\begin{aligned} {\mathcal {H}}\left( \delta ,K\right) =\left\{ t^{\delta }h_{t,x}:\left( t,x\right) \in \left[ 0,2^{-K}\right] \times {\mathbb {R}}\right\} . \end{aligned}$$

From (103), we get

$$\begin{aligned} E\sup \left\{ \left| \sum _{i=1}^{n}\epsilon _{i}g(B_{i})\right| :g\in {\mathcal {H}}\left( \delta ,K\right) \right\} \le E\left( \delta \right) 2^{-K\delta }\sqrt{n\,}. \end{aligned}$$
(104)

Also observe that each \(g\in {\mathcal {H}}\left( \delta ,K\right) \) satisfies \( |g|\le 2^{-K\delta }\). Applying Talagrand’s inequality (83) with \( M=2^{-K\delta }\), \(\sigma _{{\mathcal {H}}\left( \delta ,K\right) }^{2} = 2^{-2K\delta }\) and the bound (104), we get that for any \(\delta >0\) we have for suitable finite positive constants \(A,A_{1}>0\), for all \(z>0\)

$$\begin{aligned} {\begin{matrix} &{} P\left\{ \max _{1\le m\le n}||\sqrt{m}\alpha _{m}||_{{\mathcal {H}}\left( \delta ,K\right) }\ge \sqrt{n}A(E\left( \delta \right) 2^{-K\delta }+z)\right\} \\ &{}\quad \le 2(\exp (-z^{2}A_{1}2^{2K\delta })+\exp (-z\sqrt{n}A_{1}2^{K\delta })). \end{matrix}} \end{aligned}$$
(105)

Inequality (99) follows from inequality (105). To see this, choose any \(0<\varrho <T/2 \) and integer K such that \(2^{-K}\ge \varrho >2^{-K-1}.\) We see that

$$\begin{aligned} 2^{K+1}>\varrho ^{-1}\ge 2^{K}\ge \varrho ^{-1}/2. \end{aligned}$$

Hence \(\left\{ t^{\delta }h_{t,x}:\left( t,x\right) \in \left[ 0,\varrho \right] \times {\mathbb {R}}\right\} \subset {\mathcal {H}}\left( \delta ,K\right) \), and

$$\begin{aligned}&P\left\{ \max _{1\le m\le n}\sup _{(t,x)\in [0,\varrho ]\times {\mathbb {R}}}|\sqrt{m}t^{\delta }\alpha _{m}\left( h_{t,x}\right) |\ge \sqrt{n }A(E\left( \delta \right) 2^{\delta }\varrho ^{\delta }+z)\right\} \\&\quad \le P\left\{ \max _{1\le m\le n}||\sqrt{m}\alpha _{m}||_{{\mathcal {H}} \left( \delta ,K\right) }\ge \sqrt{n}A(E\left( \delta \right) 2^{-K\delta }+z)\right\} \\&\quad \le 2(\exp (-z^{2}A_{1}2^{2K\delta })+\exp (-z\sqrt{n}A_{1}2^{K\delta })) \\&\quad \le 2\left\{ \exp \left( -z^{2}A_{1}(2\varrho )^{-2\delta }\right) +\exp \left( -z\sqrt{n}A_{1}(2\varrho )^{-\delta }\right) \right\} . \end{aligned}$$

\(\square \)

Inequality 2A

For all \(0<\gamma <1<T<\infty \), we have for some \(L(\gamma ,T)\) and all \(z>0\) for suitable finite positive constants \(A, A_{1}>0\), for all \(z>0\)

$$\begin{aligned} \begin{array}{lll} &{} P\left\{ \max _{1\le m\le n}\sup _{(t,x)\in {\mathcal {T}}\left( \gamma \right) }|\sqrt{m}\alpha _{m}\left( h_{t,x}\right) |\ge \sqrt{n}A\left( L(\gamma ,T)+z\right) \right\} \\ &{}\quad \le 2\left\{ \exp \left( -z^{2}A_{1}\right) +\exp \left( -z\sqrt{n} A_{1}\right) \right\} . \end{array} \end{aligned}$$
(106)

Proof

We see by inequality (82)

$$\begin{aligned} E\sup _{(t,x)\in {\mathcal {T}}\left( \gamma \right) }\left| \sum _{i=1}^{n}\epsilon _{i}h_{t,x}(B_{i})\right| \le 2\sqrt{n} E\left\| v_{n}\right\| _{{\mathcal {T}}\left( \gamma \right) }+ \sqrt{n}, \end{aligned}$$

which by (9) is \(\le 2\left( M\left( \gamma ,T,H\right) +1\right) \sqrt{n}=:L(\gamma ,T)\sqrt{n}.\) Thus

$$\begin{aligned} E\sup _{(t,x)\in {\mathcal {T}}\left( \gamma \right) }\left| \sum _{i=1}^{n}\epsilon _{i}h_{t,x}(B_{i})\right| \le L(\gamma ,T)\sqrt{n }. \end{aligned}$$
(107)

Applying Talagrand’s inequality (83) with \(M=1\), \(\sigma _{{\mathcal {F}}_{\left( \gamma ,T\right) }}^{2}=1\) and the bound (107) gives (106). \(\square \)

Remark 8

Actually, to apply Talagrand’s inequality in the proofs of Inequalities 2 and 2A, as it is stated in (83), the classes of functions \({\mathcal {H}}\left( \delta ,K\right) \) and \({\mathcal {F}}_{\left( \gamma ,T\right) }\) should be pointwise measurable. Here we shall discuss how to take care of this detail in the proof of Inequality 2. A similar discussion works for the proof of Inequality 2A.

For any \(k\ge 1\), let

$$\begin{aligned} {\mathcal {H}}\left( \delta ,K,k\right) =\left\{ g1\left\{ g\in {\mathcal {C}} \left( k\right) \right\} :g\in {\mathcal {H}}\left( \delta ,K\right) \right\} . \end{aligned}$$

where C(k) is defined as in (27).

The class \({\mathcal {H}}\left( \delta ,K,k\right) \) is pointwise measurable. Applying Talagrand’s inequality, we get with \(M=2^{-K\delta }\) and \(\sigma _{ {\mathcal {H}}\left( \delta ,K,k\right) }^{2}=2^{-2K\delta }\)

$$\begin{aligned}&P\left\{ \max _{1\le m\le n}||\sqrt{m}\alpha _{m}||_{{\mathcal {H}}\left( \delta ,K,k\right) }\ge A\left( E\bigg \Vert \sum _{i=1}^{n}\epsilon _{i}g(B_{i})\bigg \Vert _{{\mathcal {H}}\left( \delta ,K,k\right) }+t\right) \right\} \\&\quad \le 2\exp \left( -\frac{2^{2K\delta }A_{1}t^{2}}{n}\right) +2\exp \left( -2^{K\delta }A_{1}t\right) . \end{aligned}$$

Obviously by the Wang [27] result (26), w.p. 1, \(B \in \cup _{k=1}^{\infty }{\mathcal {C}}\left( k\right) \). Therefore, w.p. 1, for any \( n\ge 1\), \(B_{1},\dots ,B_{n}\), i.i.d. B there exists a \(k\ge 1\) such that uniformly in \(\left( t,x\right) \in \left[ 0,\varrho \right] \times {\mathbb {R}}\), \(h_{t,x}^{\left( k\right) }\left( B_{i} \right) =h_{t,x}\left( B_{i} \right) \) and \(t^{\delta }h_{t,x}^{\left( k\right) } \left( B_{i} \right) =t^{\delta }h_{t,x}\left( B_{i}\right) \), for \(i=1,\dots ,n\). This says that, w.p. 1, for any \(n\ge 1\), there exists a \(k\ge 1,\) such that uniformly in \(\left( t,x\right) \in \left[ 0,\varrho \right] \times {\mathbb {R}}\)

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}t^{\delta }h_{t,x}\left( B_{i}\right) 1\left\{ B_{i}\notin {\mathcal {C}}\left( k\right) \right\} =0. \end{aligned}$$

Furthermore,

$$\begin{aligned} \sup _{\left( t,x\right) \in \left[ 0,\varrho \right] \times {\mathbb {R}}} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}t^{\delta } Eh_{t,x}\left( B_{i} \right) 1\left\{ B_{i}\notin {{\mathcal {C}}}\left( k\right) \right\} \le \sqrt{n}\varrho ^{\delta } P \left\{ B\notin {{\mathcal {C}}}\left( k\right) \right\} , \end{aligned}$$

which converges to zero for each fixed \(n\ge 1\), as \(k\rightarrow \infty \). By passing to the limit, as \(k\rightarrow \infty \), we get for any \(\delta >0\) and \(t>0\)

$$\begin{aligned} {\begin{matrix} &{} P\left\{ \max _{1\le m\le n}||\sqrt{m}\alpha _{m}||_{{{\mathcal {H}}}\left( \delta ,K\right) }\ge A\left( E\left\| \sum _{i=1}^{n}\epsilon _{i}g(B_{i})\right\| _{{{\mathcal {H}}}\left( \delta ,K\right) }+t\right) \right\} \\ &{}\quad \le 2\exp \left( -\frac{2^{2K\delta }A_{1}t^{2}}{n}\right) +2\exp \left( -2^{K\delta }A_{1}t\right) . \end{matrix}} \end{aligned}$$

Similarly, one can argue the validity of the Talagrand inequality using the index class \({{\mathcal {F}}}_{\left( \gamma ,T\right) }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kevei, P., Mason, D.M. Couplings and Strong Approximations to Time-Dependent Empirical Processes Based on I.I.D. Fractional Brownian Motions. J Theor Probab 30, 729–770 (2017). https://doi.org/10.1007/s10959-016-0676-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-016-0676-6

Keywords

Mathematics Subject Classification (2010)

Navigation