Skip to main content
Log in

Dispersion and Limit Theorems for Random Walks Associated with Hypergeometric Functions of Type BC

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The spherical functions of the non-compact Grassmann manifolds \(G_{p,q}({\mathbb {F}})=G/K\) over the (skew-)fields \({\mathbb {F}}={\mathbb {R}}, {\mathbb {C}}, {\mathbb {H}}\) with rank \(q\ge 1\) and dimension parameter \(p>q\) can be described as Heckman–Opdam hypergeometric functions of type BC, where the double coset space G /  / K is identified with the Weyl chamber \( C_q^B\subset {\mathbb {R}}^q\) of type B. The corresponding product formulas and Harish-Chandra integral representations were recently written down by M. Rösler and the author in an explicit way such that both formulas can be extended analytically to all real parameters \(p\in [2q-1,\infty [\), and that associated commutative convolution structures \(*_p\) on \(C_q^B\) exist. In this paper, we study the associated moment functions and the dispersion of probability measures on \(C_q^B\) with the aid of this generalized integral representation. This leads to strong laws of large numbers and central limit theorems for associated time-homogeneous random walks on \((C_q^B, *_p)\) where the moment functions and the dispersion appear in order to determine drift vectors and covariance matrices of these limit laws explicitly. For integers p, all results have interpretations for G-invariant random walks on the Grassmannians G / K. Besides the BC-cases, we also study the spaces \(GL(q,{\mathbb {F}})/U(q,{\mathbb {F}})\), which are related to Weyl chambers of type A, and for which corresponding results hold. For the rank-one-case \(q=1\), the results of this paper are well known in the context of Jacobi-type hypergroups on \([0,\infty [\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloom, W.R., Heyer, H.: Harmonic Analysis of Probability Measures on Hypergroups. De Gruyter Studies in Mathematics 20, de Gruyter-Verlag Berlin, New York (1995)

  2. Bougerol, P., Lacroix, J.: Products of random matrices with applications to Schrödinger operators. Birkhäuser, Boston (1985)

    Book  MATH  Google Scholar 

  3. Faraut, J., Harzallah, K.: Distances hilbertiennes invariantes sur un espace homogene. Ann. Inst. Fourier 24, 171–217 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Faraut, J.: Dispersion d’une mesure de probabilité sur \(SL(2,{\mathbb{R}})\) biinvariante par \(SO(2,{\mathbb{R}})\) et théorème de la limite centrale. Universite Louis Pasteur, Strasbourg (1975)

    Google Scholar 

  5. Graczyk, P.: A central limit theorem on the space of positive definite symmetric matrices. Ann. Inst. Fourier 42, 857–874 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Graczyk, P.: Dispersions and a central limit theorem on symmetric spaces. Bull. Sci. Math. II. Ser. 118, 105–116 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Heckman, G.: Dunkl operators. Séminaire Bourbaki 828, 1996–1997; Astérisque 245(1997), 223–246

  8. Heckman, G., Schlichtkrull, H.: Harmonic Analysis and Special Functions on Symmetric Spaces. Perspectives in Mathematics 16, vol. 16. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  9. Helgason, S.: Groups and Geometric Analysis. Mathematical Surveys and Monographs, vol. 83. AMS, Providence (2000)

    Book  Google Scholar 

  10. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. AMS, Providence (2001)

    Book  MATH  Google Scholar 

  11. Hoogenboom, B.: Spherical functions and invariant differential operators on complex Grassmann manifolds. Ark. Mat. 20, 69–85 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  13. Jewett, R.I.: Spaces with an abstract convolution of measures. Adv. Math. 18, 1–101 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koornwinder, T.: Jacobi functions and analysis on noncompact semisimple Lie groups. In: Askey, Richard, et al. (eds.) Special Functions: Group Theoretical Aspects and Applications. D. Reidel, Dordrecht (1984)

    Google Scholar 

  15. Le Page, E.: Theoremes limites pour les produits de matrices aleatoires. In: Heyer, H. (ed.) Probability Measures on Groups. Lecture Notes in Mathematics, vol. 928, pp. 258–303. Springer, Berlin (1982)

    Chapter  Google Scholar 

  16. Narayanan, E.K., Pasquale, A., Pusti, S.: Asymptotics of Harish-Chandra expansions, bounded hypergeometric functions associated with root systems, and applications. Adv. Math. 252, 227–259 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Opdam, E.M.: Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175, 75–112 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Opdam, E.M.: Lecture Notes on Dunkl Operators for Real and Complex Reflection Groups. MSJ Memoirs, vol. 8, Mathematical Society of Japan, Tokyo (2000)

  19. Richards, DStP: The central limit theorem on spaces of positive definite matrices. J. Multivar. Anal. 29, 326–332 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rösler, M.: Bessel convolutions on matrix cones. Compos. Math. 143, 749–779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rösler, M.: Positive convolution structure for a class of Heckman–Opdam hypergeometric functions of type BC. J. Funct. Anal. 258, 2779–2800 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rösler, M., Koornwinder, T., Voit, M.: Limit transition between hypergeometric functions of type \(BC\) and type \(A\). Compos. Math. 149, 1381–1400 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rösler, M., Voit, M.: Integral representation and uniform limits for some Heckman-Opdam hypergeometric functions of type \(BC\). Trans. Am. Math. Soc. (2015) (to appear in print). doi:10.1090/tran6673

  24. Rösler, M., Voit, M.: A central limit theorem for random walks on the dual of a compact Grassmannian. Symmetry Integr Geom SIGMA 11, 013 (2015). arXiv:1409.4213v3

  25. Sawyer, P.: Spherical functions on \(SO_0(p, q)/SO(p)\times SO(q)\). Can. Math. Bull. 42, 486–498 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schapira, B.: Contributions to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz space, heat kernel. Geom. Funct. Anal. 18, 222–250 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Terras, A.: Asymptotics of spherical functions and the central limit theorem on the space \(P_n\) of positive \(n\times n\) matrices. J. Multivar. Anal. 23, 13–36 (1987)

    Article  MATH  Google Scholar 

  28. Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications II. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  29. Tutubalin, V.N.: On the limit behaviour of compositions of measures in the plane and space of Lobachevski. Theory Probab. Appl. 7, 189–196 (1962)

    Article  MathSciNet  Google Scholar 

  30. Virtser, A.D.: Central limit theorem for semisimple Lie groups. Theor. Probab. Appl. 15, 667–687 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  31. Voit, M.: Central limit theorems for random walks on \({\mathbb{N}}_0\) that are associated with orthogonal polynomials. J. Multivar. Anal. 34, 290–322 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Voit, M.: Bessel convolutions on matrix cones: algebraic properties and random walks. J. Theor. Probab. 22, 741–771 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Voit, M.: Central limit theorems for hyperbolic spaces and Jacobi processes on \([0,\infty [\). Monatsh. Math. 169, 441–468 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Voit, M.: Product formulas for a two-parameter family of Heckman-Opdam hypergeometric functions of type BC. J. Lie Theory 25, 9–36 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Zeuner, H.: The central limit theorem for Chebli–Trimeche hypergroups. J. Theor. Probab. 2, 51–63 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zeuner, H.: Moment functions and laws of large numbers on hypergroups. Math. Z. 211, 369–407 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Voit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voit, M. Dispersion and Limit Theorems for Random Walks Associated with Hypergeometric Functions of Type BC . J Theor Probab 30, 1130–1169 (2017). https://doi.org/10.1007/s10959-016-0669-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-016-0669-5

Keywords

Mathematics Subject Classification (2010)

Navigation