Skip to main content
Log in

Tightness and Convergence of Trimmed Lévy Processes to Normality at Small Times

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

For nonnegative integers r, s, let \(^{(r,s)}X_t\) be the Lévy process \(X_t\) with the r largest positive jumps and the s smallest negative jumps up till time t deleted, and let \(^{(r)}\widetilde{X}_t\) be \(X_t\) with the r largest jumps in modulus up till time t deleted. Let \(a_t \in \mathbb {R}\) and \(b_t>0\) be non-stochastic functions in t. We show that the tightness of \(({}^{(r,s)}X_t - a_t)/b_t\) or \(({}^{(r)}{\widetilde{X}}_t - a_t)/b_t\) as \(t\downarrow 0\) implies the tightness of all normed ordered jumps, and hence the tightness of the untrimmed process \((X_t -a_t)/b_t\) at 0. We use this to deduce that the trimmed process \(({}^{(r,s)}X_t - a_t)/b_t\) or \(({}^{(r)}{\widetilde{X}}_t - a_t)/b_t\) converges to N(0, 1) or to a degenerate distribution as \(t\downarrow 0\) if and only if \((X_t-a_t)/b_t \) converges to N(0, 1) or to the same degenerate distribution, as \(t \downarrow 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aït-Sahalia, Y., Jacod, J.: Estimating the degree of activity of jumps in high frequency data. Ann. Stat. 37(5A), 2202–2244 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barndorff-Nielsen, O.: Exponentially decreasing distributions for the logarithm of particle size. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 353(1674), 401–419 (1977)

    Article  Google Scholar 

  3. Barndorff-Nielsen, O.: Processes of normal inverse Gaussian type. Financ. Stoch. 2, 41–68 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berkes, I., Horváth, L.: The central limit theorem for sums of trimmed variables with heavy tails. Stoch. Process. Appl. 122, 449–465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  6. Buchmann, B., Fan, Y., Maller, R.A.: Distributional Representations and Dominance of a Lévy Process Over Its Maximal Jump Processes. Bernoulli, (to appear) (2015)

  7. Caballero, M., Pardo, J., Pérez, J.: On Lamperti stable processes. Probab. Math. Stat. 30(1), 1–28 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Csörgő, S., Haeusler, E., Mason, D.M.: A probabilistic approach to the asymptotic distribution of sums of independent, identically distributed random variables. Adv. Appl. Math. 9(3), 259–333 (1988). doi:10.1016/0196-8858(88)90016-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Csörgő, S., Haeusler, E., Mason, D.M.: The quantile-transform-empirical-process approach to limit theorems for sums of order statistics. In: Hahn, M., Mason, D., Weiner, D. (eds.) Sums, Trimmed Sums and Extremes, Programs and Probabilities, vol. 23, pp. 215–267. Birkhäuser, Boston (1991). doi:10.1007/978-1-4684-6793-2_7

  10. Darling, D.: The influence of the maximum term in the addition of independent random variables. Trans. Am. Math. Soc 73, 95–107 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis, A., Marshak, A.: Lévy kinetics in slab geometry: scaling of transmission probability. In: Novak, M.M., Dewey, T.G. (eds.) Fractals Frontiers, pp. 63–72. World Scientific, Singapore (1997)

    Google Scholar 

  12. Doney, R.A., Maller, R.A.: Stability and attraction to normality for Lévy processes at zero and at infinity. J. Theor. Probab. 15(3), 751–792 (2002)

    Article  MATH  Google Scholar 

  13. de Weert, F.: Attraction to Stable Distributions for Lévy Processes at Zero. M. Phil Thesis, Univ. of Manchester (2003)

  14. Fan, Y.: Convergence to trimmed stable random variables at small times. Stoch. Process. Appl. 125(10), 3691–3724 (2015)

    Article  MATH  Google Scholar 

  15. Fan, Y.: A Study on Trimmed Lévy Processes. PhD Thesis. The Australian National University (2015)

  16. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II. Wiley, New York (1966)

    MATH  Google Scholar 

  17. Griffin, P.S., Mason, D.M.: On the asymptotic normality of self-normalized sums. Math. Proc. Camb. Phil. Soc. 109(3), 597–610 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Griffin, P.S., Pruitt, W.E.: The central limit problem for trimmed sums. Math. Proc. Camb. Phil. Soc. 102(2), 329–349 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hall, P.: On the extreme terms of a sample from the domain of attraction of a stable law. J. Lond. Math. Soc. 18, 181–191 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Harris, T.H., Banigan, E.J., Christian, D.A., Konradt, C., Tait Wojno, E.D., Norose, K., Wilson, E.H., John, B., Weninger, W., Luster, A.D., Liu, A.J., Hunter, C.A.: Generalized Lévy walks and the role of chemokines in migration of effector \(cd8^+\) T cells. Nature 486, 546–549 (2012)

    Google Scholar 

  21. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  22. Kesten, H.: Convergence in distribution of lightly trimmed and untrimmed sums are equivalent. Math. Proc. Camb. Phil. Soc. 113(3), 615–638 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maller, R.A.: Asymptotic normality of lightly trimmed means—a converse. Math. Proc. Camb. Phil. Soc. 92(3), 535–545 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maller, R.A., Mason, D.M.: Convergence in distribution of Lévy processes at small times with self-normalization. Acta. Sci. Math. (Szeged) 74(1–2), 315–347 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Maller, R.A., Mason, D.M.: Small-time compactness and convergence behavior of deterministically and self-normalised Lévy processes. Trans. Am. Math. Soc. 362(4), 2205–2248 (2010)

    Article  MATH  Google Scholar 

  26. Mori, T.: On the limit distributions of lightly trimmed sums. Math. Proc. Camb. Phil. Soc. 96(3), 507–516 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Applied Probability. A Series of the Applied Probability Trust, vol. 4. Springer, New York (1987)

    Google Scholar 

  28. Rosiński, J.: Series representation of Lévy processes from the perspective of point processes. In: Barndorff-Nielsen, O., Mikosch, T., Resnick, S. (eds.) Lévy Processes: Theory and Applications. Birkhäuser, Boston (2001)

    Google Scholar 

  29. Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 68. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  30. Zheng, X., Hagen, B., Kaiser, A., Wu, M., Cui, H., Silber-Li, Z., Löwen, H.: Non-Gaussian statistics for the motion of self-propelled Janus particles: experiment versus theory. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(3), 032304 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The author is very grateful to Prof. Ross Maller and Dr. Boris Buchmann for many helpful discussions and for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuguang Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y. Tightness and Convergence of Trimmed Lévy Processes to Normality at Small Times. J Theor Probab 30, 675–699 (2017). https://doi.org/10.1007/s10959-015-0658-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-015-0658-0

Keywords

Mathematics Subject Classification (2010)

Navigation