Skip to main content
Log in

Extremes of independent stochastic processes: a point process approach

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

For each n ≥ 1, let \(\{ X_{in}, \quad i \geqslant 1 \}\) be independent copies of a nonnegative continuous stochastic process X n = (X n (s)) sS indexed by a compact metric space S. We are interested in the process of partial maxima \(\tilde M_{n}(t,s) =\max \{ X_{in}(s), 1 \leqslant i\leqslant [nt] \},\quad t\geq 0,\ s\in S,\) where the brackets [ ⋅ ] denote the integer part. Under a regular variation condition on the sequence of processes X n , we prove that the partial maxima process \(\tilde M_{n}\) weakly converges to a superextremal process \(\tilde M\) as \(n\to \infty \). We use a point process approach based on the convergence of empirical measures. Properties of the limit process are investigated: we characterize its finite-dimensional distributions, prove that it satisfies an homogeneous Markov property, and show in some cases that it is max-stable and self-similar. Convergence of further order statistics is also considered. We illustrate our results on the class of log-normal processes in connection with some recent results on the extremes of Gaussian processes established by Kabluchko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of Extremes. Wiley Series in Probability and Statistics. Wiley, Chichester (2004). Theory and applications, With contributions from Daniel De Waal and Chris Ferro

    MATH  Google Scholar 

  • Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  • Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. vol. I. Probability and its Applications (New York), 2nd edn. Springer, New York (2003). Elementary theory and methods

    MATH  Google Scholar 

  • Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. vol. II. Probability and its Applications (New York), 2nd edn. Springer, New York (2008). General theory and structure

    Book  MATH  Google Scholar 

  • Davis, R.A., Mikosch, T.: Extreme value theory for space-time processes with heavy-tailed distributions. Stochastic Process. Appl. 118(4), 560–584 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Davydov, Y., Molchanov, I., Zuyev, S.: Strictly stable distributions on convex cones. Electron. J. Probab. 13(11), 259–321 (2008)

    MathSciNet  MATH  Google Scholar 

  • de Haan, L.: On Regular Variation and Its Application to the Weak Convergence of Sample Extremes, Volume 32 of Mathematical Centre Tracts. Mathematisch Centrum, Amsterdam (1970)

    Google Scholar 

  • de Haan, L., Ferreira, A.: Extreme Value Theory. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). An introduction

    Google Scholar 

  • de Haan, L., Lin, T.: On convergence toward an extreme value distribution in C[0, 1]. Ann. Probab. 29(1), 467–483 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Dwass, M.: Extremal processes. Ann. Math. Statist. 35, 1718–1725 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Dwass, M.: Extremal processes. II. Illinois J. Math. 10, 381–391 (1966)

    MathSciNet  MATH  Google Scholar 

  • Dwass, M.: Extremal processes. III. Bull. Inst. Math. Acad. Sinica 2, 255–265 (1974). Collection of articles in celebration of the sixtieth birthday of Ky Fan

    MathSciNet  MATH  Google Scholar 

  • Ethier, S.N., Kurtz, T.G.: Markov Processes. Wiley Series in Probability and Mathematical Statistics: 3 and 4 Statistics. Wiley, New York (1986). Characterization and convergence

    Google Scholar 

  • Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency of the largest or smallest member of a sample. Proc. Cambridge. Philos. Soc. 24, 180–190 (1928)

    Article  MATH  Google Scholar 

  • Gentric, Y.: Convergence of the normalized maximum of regularly varying random functions in the space \(\mathbb {D}\). C. R. Math. Acad. Sci. Paris 346(5–6), 329–334 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Giné, E., Hahn, M.G., Vatan, P.: Max-infinitely divisible and max-stable sample continuous processes. Probab. Theory Related Fields 87(2), 139–165 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Gnedenko, B.: Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. (2) 44, 423–453 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  • Hult, H., Lindskog, F.: Extremal behavior of regularly varying stochastic processes. Stochastic Process. Appl. 115(2), 249–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Hult, H., Lindskog, F.: Regular variation for measures on metric spaces. Publ. Inst Math. (Beograd) (N.S.) 80(94), 121–140 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Hüsler, J., Reiss, R.-D.: Maxima of normal random vectors: between independence and complete dependence. Statist. Probab. Lett. 7(4), 283–286 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Kabluchko, Z., Schlather, M., de Haan, L.: Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37(5), 2042–2065 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Kabluchko, Z.: Extremes of independent Gaussian processes. Extremes 14(3), 285–310 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kabluchko, Z., Stoev, S.: Stochastic integral representations and classification of sum- and max-infinitely divisible processes (Preprint)

  • Lamperti, J.: On extreme order statistics. Ann. Math. Statist. 35, 1726–1737 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Piterbarg, V.I.: Asymptotic methods in the theory of Gaussian processes and fields, volume 148 of Translations of Mathematical Monographs. American Mathematical Society, Providence (1996). Translated from the Russian by V. V. Piterbarg, Revised by the author

    Google Scholar 

  • Resnick, S.I.: Extreme values, regular variation and point processes. Springer Series in Operations Research and Financial Engineering. Springer, New York (2008). Reprint of the 1987 original

    Google Scholar 

  • Resnick, S.I.: Weak convergence to extremal processes. Ann. Probability 3(6), 951–960 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Resnick, S.I., Roy, R.: Superextremal processes, max-stability and dynamic continuous choice. Ann. Appl. Probab. 4(3), 791–811 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Resnick, S.I., Rubinovitch, M.: The structure of extremal processes. Adv. Appl. Probab. 5, 287–307 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Tiago de Oliveira, J.: Extremal processes: Definition and properties. Publ. Inst. Statist. Univ. Paris 17(2), 25–36 (1968)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Eyi-Minko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyi-Minko, F., Dombry, C. Extremes of independent stochastic processes: a point process approach. Extremes 19, 197–218 (2016). https://doi.org/10.1007/s10687-016-0243-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-016-0243-7

Keywords

AMS 2000 Subject Classifications

Navigation