Skip to main content
Log in

Heat Kernel Empirical Laws on \({\mathbb {U}}_N\) and \({\mathbb {GL}}_N\)

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This paper studies the empirical laws of eigenvalues and singular values for random matrices drawn from the heat kernel measures on the unitary groups \({\mathbb {U}}_N\) and the general linear groups \({\mathbb {GL}}_N\), for \(N\in {\mathbb {N}}\). It establishes the strongest known convergence results for the empirical eigenvalues in the \({\mathbb {U}}_N\) case, and the first known almost sure convergence results for the eigenvalues and singular values in the \({\mathbb {GL}}_N\) case. The limit noncommutative distribution associated with the heat kernel measure on \({\mathbb {GL}}_N\) is identified as the projection of a flow on an infinite-dimensional polynomial space. These results are then strengthened from variance estimates to \(L^p\) estimates for even integers p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, vol. 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  2. Arnold, L.: On the asymptotic distribution of the eigenvalues of random matrices. J. Math. Anal. Appl. 20, 262–268 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, L.: On Wigner’s semicircle law for the eigenvalues of random matrices. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19, 191–198 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.D.: Methodologies in spectral analysis of large-dimensional random matrices, a review. Stat. Sinica 9 (3), 611–677 (1999). With comments by G. J. Rodgers and Jack W. Silverstein; and a rejoinder by the author

  5. Belinschi, S.T., Bercovici, H.: Atoms and regularity for measures in a partially defined free convolution semigroup. Math. Z. 248(4), 665–674 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belinschi, S.T., Bercovici, H.: Partially defined semigroups relative to multiplicative free convolution. Int. Math. Res. Not. 2, 65–101 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bercovici, H., Voiculescu, D.: Lévy-Hinčin type theorems for multiplicative and additive free convolution. Pac. J. Math. 153(2), 217–248 (1992)

    Article  MATH  Google Scholar 

  8. Bercovici, H., Voiculescu, D.: Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42(3), 733–773 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biane, P.: Free Brownian motion, free stochastic calculus and random matrices. In: Free probability theory (Waterloo, ON, 1995), vol. 12 of Fields Inst. Commun. Am. Math. Soc., Providence, RI, 1997, pp. 1–19

  10. Biane, P.: Segal–Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems. J. Funct. Anal. 144(1), 232–286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cébron, G.: Free convolution operators and free Hall transform. J. Funct. Anal. 265(11), 2645–2708 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Collins, B., Kemp, T.: Liberation of projections. J. Funct. Anal. 266(4), 1988–2052 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Collins, B., Male, C.: The strong asymptotic freeness of Haar and deterministic matrices. Ann. Sci. Éc. Norm. Supér. (4) 47(1), 147–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Collins, B., Dahlqvist, A., Kemp ,T.: Strong Convergence of Unitary Brownian Motion. Preprint (2015).arXiv:1502.06186

  15. Diaconis, P., Evans, S.N.: Linear functionals of eigenvalues of random matrices. Trans. Amer. Math. Soc. 353(7), 2615–2633 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Driver, B.K., Hall, B.C.: Yang–Mills theory and the Segal–Bargmann transform. Commun. Math. Phys. 201(2), 249–290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Driver, B.K., Hall, B.C., Kemp, T.: The large-\(N\) limit of the Segal–Bargmann transform on \({\mathbb{U}}_N\). J. Funct. Anal. 265(11), 2585–2644 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duistermaat, J.J., Kolk, J.A.C.: Lie Groups. Universitext, Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  19. Evans, L .C.: Partial Differential Equations, second ed., vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  20. Ferrari, A.B., Titi, E.S.: Gevrey regularity for nonlinear analytic parabolic equations. Commun. Partial Differ. Equ. 23(1–2), 1–16 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 87(2), 359–369 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guionnet, A., Zeitouni, O.: Concentration of the spectral measure for large matrices. Electron. Commun. Probab. 5, 119–136 (2000). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haagerup, U., Thorbjørnsen, S.: A new application of random matrices: \({\rm Ext}(C^*_{\rm red}(F_2))\) is not a group. Annal. Math. (2) 162(2), 711–775 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hall, B.C.: A new form of the Segal-Bargmann transform for Lie groups of compact type. Can. J. Math. 51(4), 816–834 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hall, B .C.: Harmonic analysis with respect to heat kernel measure. Bull. Am. Math. Soc. (N.S.) 38(1), 43–78 (2001). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hall, B.C.: Lie Groups, Lie Algebras, and Representations: An elementary introduction, vol. 222 of Graduate Texts in Mathematics. Springer, New York, (2003). An elementary introduction

  27. Kemp, T.: The large-\(N\) limit of brownian motions on \(\mathbb{GL}_N\). To appear in Int. Math. Res. Notices (June 2013). arXiv:1306.6033

  28. Kemp, T., Nourdin, I., Peccati, G., Speicher, R.: Wigner chaos and the fourth moment. Annal. Probab. 40(4), 1577–1635 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Levermore, C.D., Oliver, M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133(2), 321–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lévy, T.: Schur–Weyl duality and the heat kernel measure on the unitary group. Adv. Math. 218(2), 537–575 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lévy, T., Maïda, M.: Central limit theorem for the heat kernel measure on the unitary group. J. Funct. Anal. 259(12), 3163–3204 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335. Cambridge University Press, Cambridge (2006)

  33. Rains, E.M.: Combinatorial properties of Brownian motion on the compact classical groups. J. Theor. Probab. 10(3), 659–679 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Robinson, D.W.: Elliptic Operators and Lie Groups. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford Science Publications, New York (1991)

  35. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  36. Saloff-Coste, L.: Aspects of Sobolev-Type Inequalities. London Mathematical Society Lecture Note Series, vol. 289. Cambridge University Press, Cambridge (2002)

  37. Voiculescu, D.: Multiplication of certain noncommuting random variables. J. Oper. Theory 18(2), 223–235 (1987)

    MathSciNet  MATH  Google Scholar 

  38. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Annal. Math. (2) 62, 548–564 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. II. Annal. Math. (2) 65, 203–207 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Annal. Math. (2) 67, 325–327 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhong, P.: On the free convolution with a free multiplicative analogue of the normal distribution. Preprint (April 2014).arXiv:1211.3160v3

Download references

Acknowledgments

The author wishes to thank Bruce Driver for many helpful and insightful conversations, particularly with regard to Section 4.1, and Brian Hall for careful proofreading and clarifying remarks regarding Theorem 1.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Kemp.

Additional information

Supported by NSF CAREER Award DMS-1254807.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemp, T. Heat Kernel Empirical Laws on \({\mathbb {U}}_N\) and \({\mathbb {GL}}_N\) . J Theor Probab 30, 397–451 (2017). https://doi.org/10.1007/s10959-015-0643-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-015-0643-7

Keywords

Mathematics Subject Classification

Navigation