Skip to main content
Log in

Limiting Spectral Distribution of Large Sample Covariance Matrices Associated with a Class of Stationary Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper, we derive an extension of the Marc̆enko–Pastur theorem to a large class of weak dependent sequences of real-valued random variables having only moment of order 2. Under a mild dependence condition that is easily verifiable in many situations, we derive that the limiting spectral distribution of the associated sample covariance matrix is characterized by an explicit equation for its Stieltjes transform, depending on the spectral density of the underlying process. Applications to linear processes, functions of linear processes, and ARCH models are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z., Silverstein, J.W.: Spectral Analysis of Large Dimensional Random Matrices. Springer Series in Statistics, 2nd edn. Springer, New York (2010)

    Book  Google Scholar 

  2. Bai, Z., Zhou, W.: Large sample covariance matrices without independence structures in columns. Stat. Sinica 18, 425–442 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Chafaï, D., Guédon, O., Lecué, G., Pajor, A. (2012) Interactions between compressed sensing, random matrices, and high dimensional geometry. To appear in Panoramas et Synthèses 38, Société Mathématique de France (SMF)

  4. Chatterjee, S.: A generalization of the Lindeberg principle. Ann. Probab. 34, 2061–2076 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Giraitis, L., Kokoszka, P., Leipus, R.: Stationary ARCH models: dependence structure and central limit theorem. Econom. Theory 16, 3–22 (2000)

    Article  MathSciNet  Google Scholar 

  6. Hall, P., Heyde, C.C.: Martingale Limit Theory and its Application. Probability and Mathematical Statistics. Academic Press, New York, London (1980)

    Google Scholar 

  7. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  8. Ibragimov, I.A., Linnik Yu, V.: Independent and stationary sequences of random variables. Wolters-Noordhoff Publishing, Groningen, Translation from the Russian edited by J.F.C. Kingman (1971)

  9. Liu, J.S.: Siegel’s formula via Stein’s identities. Stat. Probab. Lett. 21, 247–251 (1994)

    Article  MATH  Google Scholar 

  10. Marc̆enko, V., Pastur, L.: Distribution of eigenvalues for some sets of random matrices. Math. Sbornik 72, 507–536 (1967)

    MathSciNet  MATH  Google Scholar 

  11. Merlevède, F., Peligrad, M., Utev, S.: Recent advances in invariance principles for stationary sequences. Probab. Surv. 3, 1–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Neumann, M.: A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics. ESAIM Probab. Stat. 17, 120–134 (2013)

    Google Scholar 

  13. Pan, G.: Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix. J. Multivar. Anal. 101, 1330–1338 (2010)

    Article  MATH  Google Scholar 

  14. Peligrad, M., Utev, S.: Central limit theorem for stationary linear processes. Ann. Probab. 34, 1608–1622 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pfaffel, O., Schlemm, E.: Eigenvalue distribution of large sample covariance matrices of linear processes. Probab. Math. Stat. 31, 313–329 (2011)

    MathSciNet  Google Scholar 

  16. Priestley, M.B.: Nonlinear and Nonstationary Time Series Analysis. Academic Press, Waltham (1988)

    Google Scholar 

  17. Silverstein, J.W.: Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices. J. Multivar. Anal. 55, 331–339 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Silverstein, J.W., Bai, Z.D.: On the empirical distribution of eigenvalues of a class of large dimensional random matrices. J. Multivar. Anal. 54, 175–192 (1995)

    Article  MathSciNet  Google Scholar 

  19. Wang, C., Jin, B., Miao, B.: On limiting spectral distribution of large sample covariance matrices by \({\rm VARMA}(p, q)\). J. Time Ser. Anal. 32, 539–546 (2011)

    Article  MathSciNet  Google Scholar 

  20. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

  21. Wu, W.B.: Nonlinear system theory: another look at dependence. Proc. Natl. Acad. Sci. USA 102, 14150–14154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, W.B.: Asymptotic theory for stationary processes. Stat. Interface 4, 207–226 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yao, J.: A note on a Marc̆enko-Pastur type theorem for time series. Stat. Probab. Lett. 82, 22–28 (2012)

    Article  MATH  Google Scholar 

  24. Yin, Y.Q.: Limiting spectral distribution for a class of random matrices. J. Multivar. Anal. 20, 50–68 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for carefully reading the manuscript and for numerous suggestions which improved the presentation of this paper. The authors are also indebted to Djalil Chafaï for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Merlevède.

Appendix

Appendix

In this section, we give some upper bounds for the partial derivatives of \(f\) defined in (4.35).

Lemma 5.1

Let \(x\) be a vector of \(\mathbb{R }^{n N}\) with coordinates

$$\begin{aligned} x =\big ( x^{(1)}, \ldots , x^{(n)} \big ) \, \text { where for any } i \in \{1, \ldots , n \}, \ x^{(i)} = \big ( x^{(i)}_k \, , \, k \in \{1, \ldots , N \} \big ) . \end{aligned}$$

Let \(z=u+{\sqrt{ -1}}v\in \mathbb C ^+\) and \(f:=f_z\) be the function defined in (4.35). Then, for any \(i \in \lbrace 1 ,\ldots , n \rbrace \) and any \(j,k,\ell ,m \in \lbrace 1 ,\ldots , N \rbrace \), the following inequalities hold true:

$$\begin{aligned}&\left| \frac{\partial ^2 f }{\partial x^{(i)}_{m} \partial x^{(i)}_{j}} (x) \right| \le \frac{8}{v^3 n^2 N} \sum _{r=1}^{N}\big |x^{(i)}_{r}\big |^2 + \frac{2}{v^2 n N} \, ,\\&\quad \left| \frac{\partial ^3 f }{\partial x^{(i)}_{\ell }\partial x^{(i)}_{m} \partial x^{(i)}_{j}} (x) \right| \le \frac{48}{v^4 n^3 N} \, \left( \sum _{r=1}^{N}\big |x^{(i)}_{r}\big |^2 \right) ^{3/2} +\frac{24 }{v^3 n^2 N} \left( \sum _{r=1}^{N}\big |x^{(i)}_{r}\big |^2 \right) ^{1/2} , \end{aligned}$$

and

$$\begin{aligned} \left| \frac{\partial ^4 f }{\partial x^{(i)}_{k}\partial x^{(i)}_{\ell }\partial x^{(i)}_{m} \partial x^{(i)}_{j}} (x) \right| \le \frac{24 \times 16}{v^5 n^4 N} \left( \sum _{r=1}^{N} \big |x^{(i)}_{r}\big |^2\right) ^2 + \frac{36 \times 8}{v^4 n^3 N} \sum _{r=1}^{N} \big |x^{(i)}_{r}\big |^2 + \frac{24}{v^3 n^2 N}. \end{aligned}$$

Proof

Recall that \(f(x)=\frac{1}{N}\mathrm{Tr}\big (A(x)-z\mathbf{{I}}\big )^{-1}\) where \( A(x) = \frac{1}{n}\sum _{k=1}^{n}( x^{(k)})^Tx^{(k)}\). To prove the lemma, we shall proceed as in Chatterjee [4] (see the proof of its Theorem 1.3) but with some modifications since his computations are made in case where \(A(x)\) is a Wigner matrix of order \(N\).

Let \(i \in \lbrace 1, \ldots , n \rbrace \) and consider for any \(j,k \in \lbrace 1 , \ldots , N \rbrace \), the notations \( \partial _{j}\) instead of \(\partial / \partial x^{(i)}_{j} \), \( \partial _{jk}^{2}\) instead of \(\partial ^{2}/\partial x^{(i)}_{j} \partial x^{(i)}_{k}\) and so on. We shall also write \(A\) instead of \(A(x)\), \(f\) instead of \(f(x)\), and define \(G= \big (A-z\mathbf{{I}}\big )^{-1}\).

Note that \(\partial _{j}A\) is the matrix with \(n^{-1}\big (x^{(i)}_{1}, \ldots ,x^{(i)}_{j-1},2x^{(i)}_{j},x^{(i)}_{j+1},\ldots , x^{(i)}_{N}\big ) \) as the \(j^{th}\) row, its transpose as the \(j^{th}\) column, and zero otherwise. Thus, the Hilbert–Schmidt norm of \(\partial _{j}A\) is bounded as follows:

$$\begin{aligned} \Vert \partial _{j}A \Vert _{2} = \frac{1}{n}\Big ( 2 \sum _{k=1 \, , k \ne j}^{N}|x^{(i)}_{k}|^2 + 4 |x^{(i)}_{j}|^2 \Big )^{1/2}\le \frac{2}{n} \Big (\sum _{k=1}^{N}|x^{(i)}_{k}|^2\Big )^{1/2}. \end{aligned}$$
(5.1)

Now, for any \( m,j \in \lbrace 1 , \ldots , N \rbrace \) such that \(m \ne j \), \(\partial _{mj}^{2}A\) has only two non-zero entries which are equal to \(1/n\), whereas if \(m=j\), it has only one non-zero entry which is equal to \(2/n\). Hence,

$$\begin{aligned} \Vert \partial _{mj}^{2}A \Vert _{2} \le \frac{2}{n} . \end{aligned}$$
(5.2)

Finally, note that \(\partial _{lmj}^{3}A\equiv 0\) for any \(j , m , l \in \lbrace 1 , \ldots , N \rbrace \).

Now, by using (4.36), it follows that, for any \(j \in \lbrace 1 , \ldots , N \rbrace \),

$$\begin{aligned} \partial _{j}f=-\frac{1}{N}\mathrm{Tr}(G(\partial _{j}A)G) . \end{aligned}$$
(5.3)

In what follows, the notations \(\sum _{\lbrace \!j',m'\rbrace \!=\!\lbrace j,m\rbrace }\), \(\sum _{\lbrace j',m',\!\ell '\rbrace \!=\!\lbrace j,m, \ell \rbrace }\) and \(\sum _{\lbrace j',m',\!\ell ' , k'\rbrace \!=\!\lbrace j,m, \ell , k \rbrace }\) mean, respectively, the sum over all permutations of \(\lbrace j,m\rbrace \), of \(\lbrace j,m, \ell \rbrace \), and of \(\lbrace j,m, \ell , k\rbrace \). Therefore, the first sum consists of \(2\) terms, the second one of \(6\) terms, and the last one of \(24\) terms. Starting from (5.3) and applying repeatedly (4.36), we then derive the following cumbersome formulas for the partial derivatives up to the order four: for any \( j,m,\ell ,k \in \{1, \ldots , N \}\),

$$\begin{aligned} \partial _{mj}^{2}f=\frac{1}{N} \sum _{\lbrace j',m'\rbrace =\lbrace j, m \rbrace } \mathrm{Tr}\big (G(\partial _{j'}A) G (\partial _{m'}A) G \big ) - \frac{1}{N}\mathrm{Tr} \big ( G (\partial _{mj}^{2}A) G \big ), \end{aligned}$$
(5.4)
$$\begin{aligned} \partial _{\ell mj}^{3}f&= -\frac{1}{N} \sum _{\lbrace j',m',\ell '\rbrace =\lbrace j,m, \ell \rbrace } \mathrm{Tr}\big (G(\partial _{j'}A)G(\partial _{m'}A)G(\partial _{\ell '}A)G\big ) \nonumber \\&\quad +\frac{1}{N} \sum _{\lbrace j', m'\rbrace =\lbrace j, m \rbrace } \mathrm{Tr}\Big (G(\partial _{\ell j'}^{2}A)G(\partial _{m'}A)G + G(\partial _{j'}A)G(\partial _{\ell m'}^{2}A)G\Big ) \nonumber \\&\quad + \frac{1}{N} \mathrm{Tr}\big (G(\partial _{\ell }A)G(\partial _{mj}^{2}A)G\big ) + \frac{1}{N} \mathrm{Tr}\big (G(\partial _{mj}^{2}A)G(\partial _{\ell }A)G\big ), \end{aligned}$$
(5.5)

and

$$\begin{aligned} \partial _{ k \ell mj}^{4}f := I_1 +I_2 + I_3 + I_4 + I_5 +I_6 , \end{aligned}$$
(5.6)

where

$$\begin{aligned} I_1 = \frac{1}{N} \sum _{\lbrace j',m',\ell ' , k '\rbrace =\lbrace j,m, \ell ,k\rbrace } \mathrm{Tr}\big (G(\partial _{j'}A)G(\partial _{m'}A)G(\partial _{\ell '}A)G (\partial _{k'}A)G\big ), \end{aligned}$$
$$\begin{aligned} I_2&= -\frac{1}{N} \sum _{\lbrace j',m',\ell '\rbrace =\lbrace j,m, \ell \rbrace } \Big ( \mathrm{Tr}\big (G(\partial ^2_{kj'}A)G(\partial _{m'}A)G(\partial _{\ell '}A)G\big )\\&+ \mathrm{Tr}\big (G(\partial _{j'}A)G(\partial ^2_{km'}A)G(\partial _{\ell '}A)G\big ) + \mathrm{Tr}\big (G(\partial _{j'}A)G(\partial _{m'}A)G(\partial ^2_{k \ell '}A)G\big ) \Big ), \end{aligned}$$
$$\begin{aligned}&I_3=-\frac{1}{N} \sum _{\lbrace j',m'\rbrace =\lbrace j,m \rbrace } \Big ( \mathrm{Tr}\big (G(\partial ^2_{\ell j'}A)G(\partial _{k}A)G(\partial _{m'}A)G\big )\\&\quad \!+\!\mathrm{Tr}\big (G(\partial ^2_{\ell j'}A)G(\partial _{m'}A)G(\partial _{k}A)G\big ) \Big ) \!-\!\frac{1}{N} \sum _{\lbrace j',m'\rbrace \!=\!\lbrace j,m \rbrace } \Big ( \mathrm{Tr}\big (G(\partial _{k}A)G(\partial ^2_{\ell j'}A)G(\partial _{m'}A)G\big )\\&\quad \!+\!\mathrm{Tr}\big (G(\partial _{j'}A)G(\partial ^2_{\ell m'}A)G(\partial _{k}A)G\big ) \Big ) \!-\!\frac{1}{N} \sum _{\lbrace j',m'\rbrace \!=\!\lbrace j,m \rbrace } \Big ( \mathrm{Tr}\big (G(\partial _{k}A)G(\partial _{j'}A)G(\partial ^2_{\ell m'}A)G \big )\\&\quad \!+\!\mathrm{Tr}\big (G(\partial _{j'}A)G(\partial _{k}A)G(\partial ^2_{\ell m'}A)G\big ) \Big ) , \end{aligned}$$
$$\begin{aligned} I_4&= -\frac{1}{N} \sum _{\lbrace k',\ell '\rbrace =\lbrace k,\ell \rbrace } \Big ( \mathrm{Tr}\big (G(\partial ^2_{m j}A)G (\partial _{k'}A)G(\partial _{\ell '}A ) G \big )\\&+\mathrm{Tr}\big (G(\partial _{k'}A) G (\partial ^2_{m j}A) G(\partial _{\ell '}A ) G \big ) +\mathrm{Tr}\big (G(\partial _{k'}A) G(\partial _{\ell '}A ) G (\partial ^2_{m j}A) G \big ) \Big ) , \end{aligned}$$
$$\begin{aligned} I_5 = \frac{1}{N} \sum _{\lbrace k',\ell '\rbrace =\lbrace k,\ell \rbrace } \sum _{\lbrace j',m'\rbrace =\lbrace j,m \rbrace } \mathrm{Tr}\big ( G(\partial ^2_{\ell ' j' }A)G(\partial ^2_{k' m' }A)G\big ), \end{aligned}$$

and

$$\begin{aligned} I_6 = \frac{1}{N} \mathrm{Tr}\big (G(\partial _{m j}^{2}A)G(\partial ^2_{k \ell }A)G\big ) +\frac{1}{N} \mathrm{Tr}\big (G(\partial _{k \ell }^{2}A)G(\partial ^2_{m j}A)G\big ) . \end{aligned}$$

We start by giving an upper bound for \(\partial _{mj}^{2}f\). Since the eigenvalues of \(G^2\) are all bounded by \(v^{-2}\), then so are its entries. Then, as \( \mathrm{Tr}(G(\partial _{mj}^{2}A)G) = \mathrm{Tr}((\partial _{mj}^{2}A)G^2) \), it follows that

$$\begin{aligned} |\mathrm{Tr}(G(\partial _{mj}^{2}A)G)|=|\mathrm{Tr}((\partial _{mj}^{2}A)G^2)| \le 2v^{-2}n^{-1} . \end{aligned}$$
(5.7)

Next, to give an upper bound for \( | \mathrm{Tr}\big (G(\partial _{j}A) G (\partial _{m}A) G \big ) |\), it is useful to recall some properties of the Hilbert–Schmidt norm: Let \(B=(b_{ij})_{1\le i,j\le N}\) and \(C=(c_{ij})_{1\le i,j\le N}\) be two \(N\times N\) complex matrices in \(\mathcal L _{2}\), the set of Hilbert–Schmidt operators. Then

  1. (a)

    \(|\mathrm{Tr}(BC)|\le \Vert B\Vert _{2} \Vert C\Vert _{2}\).

  2. (b)

    If \(B\) admits a spectral decomposition with eigenvalues \(\lambda _1, \ldots , \lambda _N\), then \(\max \lbrace \Vert BC\Vert _{2}, \Vert CB \Vert _{2}\rbrace \le \max _{1 \le i \le N} | \lambda _i|.\Vert C \Vert _{2}\).

(See, e.g., [20] pages 55–58, for a proof of these facts).

Using the properties of the Hilbert–Schmidt norm recalled above, the fact that the eigenvalues of \(G\) are all bounded by \(v^{-1}\), and (5.1), we then derive that

$$\begin{aligned}&| \mathrm{Tr}(G(\partial _{j}A) G(\partial _{m}A)G)| \le \Vert G(\partial _{j}A)G \Vert _{2} . \Vert (\partial _{m}A)G \Vert _{2}\nonumber \\&\quad \le \Vert G \Vert . \Vert (\partial _{j}A)G \Vert _{2} . \Vert \partial _{m}A \Vert _{2} . \Vert G \Vert \nonumber \\&\quad \le \Vert G \Vert ^{3} . \Vert \partial _{j}A \Vert _{2} . \Vert \partial _{m}A \Vert _{2} \le \frac{4}{v^3 n^2} \sum _{k=1}^{N}\big |x^{(i)}_{k}\big |^2. \end{aligned}$$
(5.8)

Starting from (5.4) and considering (5.7) and (5.8), the first inequality of Lemma 5.1 follows.

Next, using again the above properties (a) and (b), the fact that the eigenvalues of \(G\) are all bounded by \(v^{-1}\), (5.1) and (5.2), we get that

$$\begin{aligned}&| \mathrm{Tr}(G(\partial _{j} A) G(\partial _{m}A)G(\partial _{\ell }A)G)| \le \Vert G(\partial _{j}A)G (\partial _{m}A)G\Vert _{2} . \Vert (\partial _{\ell }A)G \Vert _{2} \nonumber \\&\quad \le \Vert G(\partial _{j}A)G (\partial _{m}A)\Vert _{2} . \Vert G \Vert ^2 . \Vert \partial _{\ell }A \Vert _{2} \le \Vert G(\partial _{j}A) \Vert _2 . \Vert G (\partial _{m}A)\Vert _{2} . \Vert G \Vert ^2 . \Vert \partial _{\ell }A \Vert _{2} \nonumber \\&\quad \le \Vert G \Vert ^4 . \Vert \partial _{j}A \Vert _2 . \Vert \partial _{m} A \Vert _{2} . \Vert \partial _{\ell }A \Vert _{2} \le \frac{8}{v^4 n^3} \Bigl ( \sum _{k=1}^{N}\big |x^{(i)}_{k}\big |^2 \Bigr )^{3/2}, \end{aligned}$$
(5.9)

and

$$\begin{aligned}&| \mathrm{Tr}(G(\partial ^2_{\ell j} A) G(\partial _{m}A)G)| \le \Vert G(\partial ^2_{\ell j}A)G \Vert _{2} . \Vert (\partial _{m}A)G \Vert _{2}\nonumber \\&\quad \le \Vert G \Vert ^2 \Vert G(\partial ^2_{\ell j}A) \Vert _{2} . \Vert \partial _{m} A\Vert _{2} \nonumber \\&\quad \le \Vert G \Vert ^3 . \Vert \partial ^2_{\ell j}A \Vert _2 . \Vert \partial _{m} A \Vert _{2} \le \frac{4}{v^3 n^2} \Bigl ( \sum _{k=1}^{N}\big |x^{(i)}_{k}\big |^2 \Bigr )^{1/2} . \end{aligned}$$
(5.10)

The same last bound is obviously valid for \(| \mathrm{Tr}(G(\partial _{m}A)G(\partial ^2_{\ell j} A) G)| \). Hence, starting from (5.5) and considering (5.9) and (5.10), the second inequality of Lemma 5.1 follows.

It remains to prove the third inequality of Lemma 5.1. Using again the above properties (a) and (b), the fact that the eigenvalues of \(G\) are all bounded by \(v^{-1}\), (5.1) and (5.2), we infer that

$$\begin{aligned}&| \mathrm{Tr}(G(\partial _{j} A) G(\partial _{m}A)G(\partial _{\ell }A)G (\partial _{k}A)G)| \le \frac{16}{v^5 n^4} \Bigl ( \sum _{k=1}^{N}\big |x^{(i)}_{k}\big |^2 \Bigr )^{2},\end{aligned}$$
(5.11)
$$\begin{aligned}&| \mathrm{Tr}(G(\partial ^2_{\ell j} A) G(\partial _{m}A)G (\partial _{k}A)G)| \le \frac{8}{v^4 n^3} \sum _{k=1}^{N}\big |x^{(i)}_{k}\big |^2 , \end{aligned}$$
(5.12)

and

$$\begin{aligned} | \mathrm{Tr}(G(\partial ^2_{\ell j} A) G(\partial ^2_{mk}A)G )| \le \frac{4}{v^3 n^2} . \end{aligned}$$
(5.13)

Clearly, the bound (5.12) is also valid for the quantities \(| \mathrm{Tr}( G(\partial _{m}A)\!G(\partial ^2_{\ell j} A)\!G (\partial _{k}A)\!G)| \) and \(| \mathrm{Tr}( G(\partial _{m}A)G (\partial _{k}A)G(\partial ^2_{\ell j} A)G)| \). So, overall, starting from (5.6) and considering (5.11), (5.12), and (5.13), the third inequality of Lemma 5.1 follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banna, M., Merlevède, F. Limiting Spectral Distribution of Large Sample Covariance Matrices Associated with a Class of Stationary Processes. J Theor Probab 28, 745–783 (2015). https://doi.org/10.1007/s10959-013-0508-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-013-0508-x

Keywords

Mathematics Subject Classification (2010)

Navigation