Skip to main content
Log in

Convergence in Law to Operator Fractional Brownian Motions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper, we provide two approximations in law of operator fractional Brownian motions. One is constructed by Poisson processes, and the other generalizes a result of Taqqu (Z. Wahrscheinlichkeitstheor. Verw. Geb. 31:287–302, 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biermé, H., Meerschaert, M.M., Scheffler, H.P.: Operator scaling stable random fields. Stoch. Process. Appl. 117, 312–332 (2007)

    Article  MATH  Google Scholar 

  2. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  3. Chung, C.F.: Sample means, sample autocovariances, and linear regression of stationary multivariate long memory processes. Econom. Theory 18, 51–78 (2002)

    Article  MATH  Google Scholar 

  4. Dai, H., Li, Y.: A weak limit theorem for generalized multifractional Brownian motion. Stat. Probab. Lett. 80, 348–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davidson, J., de Jong, R.M.: The functional central limit theorem and weak convergence to stochastic integrals II. Econom. Theory 16, 643–666 (2000)

    Article  MATH  Google Scholar 

  6. Davidson, J., Hashimzade, N.: Alternative frequency and time domain versions of fractional Brownian motion. Econom. Theory 24, 256–293 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Davydov, Y.: The invariance principle for stationary processes. Teor. Verojatnost. Primenen. 15, 498–509 (1970)

    MATH  Google Scholar 

  8. Delgado, R.: A reflected fBm limit for fluid models with ON/OFF sources under heavy traffic. Stoch. Process. Appl. 117, 188–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delgado, R., Jolis, M.: Weak approximation for a class of Gaussian process. J. Appl. Probab. 37, 400–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Didier, G., Pipiras, V.: Integral representations and properties of operator fractional Brownian motions. Bernoulli 17, 1–33 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Didier, G., Pipiras, V.: Exponents, symmetry groups and classification of operator fractional Brownian motions. J. Theor. Probab. doi:10.1007/s10959-011-0348-5 (2011)

    Google Scholar 

  12. Dolado, J., Marmol, F.: Asymptotic inference results for multivariate long-memory processes. Econom. J. 7, 168–190 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Enriquez, N.: A simple construction of the fractional Brownian motion. Stoch. Process. Appl. 109, 203–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  15. Feller, W.: An Introduction to Probability Theory and its Applications, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  16. Hudson, W.N., Mason, J.D.: Operator-self-similar processes in a finite-dimensional space. Trans. Am. Math. Soc. 273, 281–297 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jurek, Z.J., Mason, J.D.: Operator Limit Distributions in Probability Theory. Wiley, New York (1993)

    MATH  Google Scholar 

  18. Konstantopoulos, T., Lin, S.J.: Fractional Brownian approximations of queuing networks. In: Stochastic Networks. Lecture Notes in Statistics, vol. 117, pp. 257–273. Springer, New York (1996)

    Chapter  Google Scholar 

  19. Laha, T.L., Rohatgi, V.K.: Operator self-similar processes in ℝd. Stoch. Process. Appl. 12, 73–84 (1982)

    Article  MathSciNet  Google Scholar 

  20. Lamperti, L.: Semi-stable stochastic processes. Trans. Am. Math. Soc. 104, 62–78 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maejima, M., Mason, J.D.: Operator-self-similar stable processes. Stoch. Process. Appl. 54, 139–163 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marinucci, D., Robinson, P.: Weak convergence of multivariate fractional processes. Stoch. Process. Appl. 86, 103–120 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mason, J.D., Xiao, Y.: Sample path properties of operator-self-similar Gaussian random fields. Theory Probab. Appl. 46, 58–78 (2002)

    Article  MathSciNet  Google Scholar 

  24. Meerschaert, M.M., Scheffler, H.P.: Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley, New York (2001)

    Google Scholar 

  25. Robinson, P.: Multiple local whittle estimation in stationary systems. Ann. Stat. 36, 2508–2530 (2008)

    Article  MATH  Google Scholar 

  26. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York (1994)

    MATH  Google Scholar 

  27. Sato, K.: Self-similar processes with independent increments. Probab. Theory Relat. Fields 89, 285–300 (1991)

    Article  MATH  Google Scholar 

  28. Stroock, D.: In: Topics in Stochastic Differential Equations, Tata Institute of Fundamental Research, Bomaby. Springer, New York (1982)

    Google Scholar 

  29. Taqqu, M.S.: Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheor. Verw. Geb. 31, 287–302 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vervaat, W.: Sample path properties of self-similar processes with stationary increments. Ann. Probab. 13, 1–27 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Whitt, W.: Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer, New York (2002)

    Google Scholar 

Download references

Acknowledgements

The author thanks Professor Yimin Xiao, Michigan State University, USA, and Professor Yuqiang Li, East China Normal University, China, for stimulating discussions. I also would like to thank the reviewer for helpful comments to improve this work. This work was supported by the Scientific Research Foundation of Guangxi University (No. XBZ110398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshuai Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, H. Convergence in Law to Operator Fractional Brownian Motions. J Theor Probab 26, 676–696 (2013). https://doi.org/10.1007/s10959-011-0401-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-011-0401-4

Keywords

Mathematics Subject Classification (2000)

Navigation