Skip to main content
Log in

Spectral Representation of Gaussian Semimartingales

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The aim of the present paper is to characterize the spectral representation of Gaussian semimartingales. That is, we provide necessary and sufficient conditions on the kernel K for X t = K t (s) dN s to be a semimartingale. Here, N denotes an independently scattered Gaussian random measure on a general space S. We study the semimartingale property of X in three different filtrations. First, the ℱX-semimartingale property is considered, and afterwards the ℱX,∞-semimartingale property is treated in the case where X is a moving average process and ℱ X,∞ t =σ(X s :s∈(−∞,t]). Finally, we study a generalization of Gaussian Volterra processes. In particular, we provide necessary and sufficient conditions on K for the Gaussian Volterra process t−∞ K t (s) dW s to be an ℱW,∞-semimartingale (W denotes a Wiener process). Hereby we generalize a result of Knight (Foundations of the Prediction Process, 1992) to the nonstationary case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29(2), 766–801 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barndorff-Nielsen, O.E., Schmiegel, J.: Ambit processes: with applications to turbulence and tumour growth. In: Proceedings of Abel Symposium on Stochastic Analysis and Applications, vol. 2, pp. 93–124. Springer, Berlin (2007)

    Google Scholar 

  3. Basse, A.: Gaussian moving averages and semimartingales. Electron. J. Probab. 13(39), 1140–1165 (2008)

    MathSciNet  Google Scholar 

  4. Basse, A.: Representation of Gaussian semimartingales with application to the covariance function. Stochatics (2009, in press) (available from http://www.imf.au.dk/publs?id=674)

  5. Basse, A., Pedersen, J.: Lévy driven moving averages and semimartingales. Stoch. Process. Appl. 119(9), 2970–2991 (2009)

    Article  MATH  Google Scholar 

  6. Cheridito, P.: Gaussian moving averages, semimartingales and option pricing. Stochastic Process. Appl. 109(1), 47–68 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cherny, A.: When is a moving average a semimartingale? In: MaPhySto 2001, p. 28 (2001)

  8. Decreusefond, L.: Stochastic integration with respect to Volterra processes. Ann. Inst. H. Poincaré Probab. Stat. 41(2), 123–149 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Doob, J.L.: Stochastic Processes. Wiley Classics Library. Wiley, New York (1990). Reprint of the 1953 original, Wiley-Interscience

    MATH  Google Scholar 

  10. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288. Springer, Berlin (2003)

    MATH  Google Scholar 

  11. Jeulin, T., Yor, M.: Moyennes mobiles et semimartingales. In: Séminaire de Probabilités XXVII. Lecture Notes in Mathematics, vol. 1557, pp. 53–77. Springer, New York (1993)

    Chapter  Google Scholar 

  12. Knight, F.B.: Foundations of the Prediction Process. Oxford Studies in Probability, vol. 1. Clarendon/Oxford University Press, New York/Oxford (1992)

    MATH  Google Scholar 

  13. Kuelbs, J.: A representation theorem for symmetric stable processes and stable measures on H. Z. Wahrsch. Verw. Gebiete 26, 259–271 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. Marquardt, T.: Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12(6), 1099–1126 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Applications of Mathematics (New York). Stochastic Modelling and Applied Probability, vol. 21. Springer, Berlin (2004)

    MATH  Google Scholar 

  16. Rajput, B.S., Rosiński, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82(3), 451–487 (1989)

    Article  MATH  Google Scholar 

  17. Rogers, L.C.G.: Arbitrage with fractional Brownian motion. Math. Finance 7(1), 95–105 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Stricker, C.: Semimartingales gaussiennes—application au problème de l’innovation. Z. Wahrsch. Verw. Gebiete 64(3), 303–312 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Basse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basse, A. Spectral Representation of Gaussian Semimartingales. J Theor Probab 22, 811–826 (2009). https://doi.org/10.1007/s10959-009-0246-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-009-0246-2

Keywords

Mathematics Subject Classification (2000)

Navigation