Skip to main content
Log in

The Central Limit Problem for Random Vectors with Symmetries

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Motivated by the central limit problem for convex bodies, we study normal approximation of linear functionals of high-dimensional random vectors with various types of symmetries. In particular, we obtain results for distributions which are coordinatewise symmetric, uniform in a regular simplex, or spherically symmetric. Our proofs are based on Stein’s method of exchangeable pairs; as far as we know, this approach has not previously been used in convex geometry. The spherically symmetric case is treated by a variation of Stein’s method which is adapted for continuous symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anttila, M., Ball, K., Perissinaki, I.: The central limit problem for convex bodies. Trans. Am. Math. Soc. 355(12), 4723–4735 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubert, S., Lam, C.S.: Invariant integration over the unitary group. J. Math. Phys. 44(12), 6112–6131 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baldi, P., Rinott, Y., Stein, C.: A normal approximation for the number of local maxima of a random function on a graph. In: Probability, Statistics, and Mathematics: Papers in Honor of Samuel Karlin, pp. 59–81. Academic, Boston (1989)

    Google Scholar 

  4. Ball, K., Perissinaki, I.: The subindependence of coordinate slabs in l n p balls. Israel J. Math. 107, 289–299 (1998)

    MATH  MathSciNet  Google Scholar 

  5. Bastero, J., Bernués, J.: Asymptotic behaviour of averages of k-dimensional margins of measures on ℝn. Preprint (2005)

  6. Bobkov, S.G.: Personal communication

  7. Bobkov, S.G.: On concentration of distributions of random weighted sums. Ann. Probab. 31(1), 195–215 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bobkov, S.G.: Spectral gap and concentration for some spherically symmetric probability measures. In: Geometric Aspects of Functional Analysis (2001–2002). Lecture Notes in Math., vol. 1807, pp. 37–43. Springer, Berlin (2003)

    Google Scholar 

  9. Bobkov, S.G., Koldobsky, A.: On the central limit property of convex bodies. In: Geometric Aspects of Functional Analysis (2001–2002). Lecture Notes in Math., vol. 1807, pp. 44–52. Springer, Berlin (2003)

    Google Scholar 

  10. Brehm, U., Hinow, P., Vogt, H., Voigt, J.: Moment inequalities and central limit properties of isotropic convex bodies. Math. Z. 240(1), 37–51 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brehm, U., Voigt, J.: Asymptotics of cross sections for convex bodies. Beitr. Algebra Geom. 41(2), 437–454 (2000)

    MATH  MathSciNet  Google Scholar 

  12. Bryc, W.: The Normal Distribution, Characterizations with Applications. Lecture Notes in Statistics, vol. 100. Springer, New York (1995)

    MATH  Google Scholar 

  13. Diaconis, P., Freedman, D.: A dozen de Finetti-style results in search of a theory. Ann. Inst. H. Poincaré Probab. Stat. 23(2, suppl.), 397–423 (1987)

    MathSciNet  Google Scholar 

  14. Gordon, Y.: On Milman’s inequality and random subspaces which escape through a mesh in R n. In: Geometric Aspects of Functional Analysis (1986/87). Lecture Notes in Math., vol. 1317, pp. 84–106. Springer, Berlin (1988)

    Chapter  Google Scholar 

  15. Holmes, S., Reinert, G.: Stein’s method for the bootstrap. In: Stein’s Method: Expository Lectures and Applications. IMS Lecture Notes Monogr. Ser., vol. 46, pp. 95–136. Inst. Math. Stat., Beachwood (2004)

    Google Scholar 

  16. John, F.: Extremium problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187–204. Interscience, New York (1948)

    Google Scholar 

  17. Kannan, R., Lovász, L., Simonovits, M.: Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13(3–4), 541–559 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Koldobsky, A., Lifshits, M.: Average volume of sections of star bodies. In: Geometric Aspects of Functional Analysis (1996–2000). Lecture Notes in Math., vol. 1745, pp. 119–146. Springer, Berlin (2000)

    Chapter  Google Scholar 

  19. Ledoux, M.: Spectral gap, logarithmic Sobolev constant, and geometric bounds. In: Surveys in Differential Geometry, vol.  ix, pp. 219–240. Int. Press, Somerville (2004)

    Google Scholar 

  20. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  21. Meckes, E.: Linear functions on the classical matrix groups. Trans. Am. Math. Soc. (to appear)

  22. Meckes, E.: An infinitesimal version of Stein’s method of exchangeable pairs. Ph.D. thesis, Stanford University (2006)

  23. Naor, A.: The surface measure and cone measure on the sphere of n p . Trans. Am. Math. Soc. 359(3), 1045–1079 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Naor, A., Romik, D.: Projecting the surface measure of the sphere of n p . Ann. Inst. H. Poincaré Probab. Stat. 39(2), 241–261 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Prékopa, A.: On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34, 335–343 (1973)

    MATH  MathSciNet  Google Scholar 

  26. Reitzner, M.: Central limit theorems for random polytopes. Probab. Theory Relat. Fields 133(4), 483–507 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rinott, Y., Rotar, V.: On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted U-statistics. Ann. Appl. Probab. 7(4), 1080–1105 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schechtman, G., Zinn, J.: On the volume of the intersection of two L n p balls. Proc. Am. Math. Soc. 110(1), 217–224 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sodin, S.: Tail-sensitive Gaussian asymptotics for marginals of concentrated measures in high dimension. In: Geometric Aspects of Functional Analysis (2004–2005). Lecture Notes in Math., vol. 1910, pp. 271–295. Springer, Berlin (2007)

    Chapter  Google Scholar 

  30. Stein, C.: Approximate Computation of Expectations. Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol 7. Institute of Mathematical Statistics, Hayward (1986)

    MATH  Google Scholar 

  31. Stein, C.: The accuracy of the normal approximation to the distribution of the traces of powers of random orthogonal matrices. Technical Report 470, Stanford University Dept. of Statistics (1995)

  32. Sudakov, V.N.: Typical distributions of linear functionals in finite-dimensional spaces of high dimension. Dokl. Akad. Nauk SSSR 243(6), 1402–1405 (1978)

    MathSciNet  Google Scholar 

  33. Wojtaszczyk, J.O.: The square negative correlation property for generalized Orlicz balls. In: Geometric Aspects of Functional Analysis (2004–2005). Lecture Notes in Math., vol. 1910, pp. 305–313. Springer, Berlin (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Meckes.

Additional information

This work was done while at Stanford University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meckes, E.S., Meckes, M.W. The Central Limit Problem for Random Vectors with Symmetries. J Theor Probab 20, 697–720 (2007). https://doi.org/10.1007/s10959-007-0119-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-007-0119-5

Keywords

Navigation