Skip to main content

Average volume of sections of star bodies

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1745))

Abstract

We study the asymptotic behavior, as the dimension goes to infinity, of the volume of sections of the unit balls of the spaces ℓ n q , 0 < q ≤ ∞. We compute the precise asymptotics of the average volume of central sections and then prove a concentration inequality of exponential type. For the case of non-central hyperplane sections of the cube, we prove a local limit theorem confirming the conjecture on the asymptotically Gaussian dependence of the volume of sections on the distance from the hyperplane to the origin. Note that a weak limit theorem was established very recently in [ABP] for a larger class of bodies. Our calculations are based on connections between volume and the Fourier transform.

The first named author was supported in part by the NSF Grant DMS-9996431. The second named author was supported in parts by RFBR and INTAS Grant 99-01-00112.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anttila M., Ball K., Perissinaki I. The central limit problem for convex bodies. Preprint

    Google Scholar 

  2. Artin E. (1964) The Gamma Function. Athena Series: Selected Topics in Mathematics. Holt, Rinehart and Winston, New York-Toronto-London

    Google Scholar 

  3. Ball K. (1986) Cube slicing in ℝn. Proc. Amer. Math. Soc. 97:465–473

    MathSciNet  MATH  Google Scholar 

  4. Ball K. (1988) Logarithmically concave functions and sections of convex sets in ℝn. Studia Math. 87:69–84

    MathSciNet  MATH  Google Scholar 

  5. Ball K. (1989) Volumes of sections of cubes and related problems. Geometric Aspects of Functional Analysis (1987–88), Lecture Notes in Math., 1376, Springer, Berlin-New York, 251–260

    Google Scholar 

  6. Brehm U., Voigt J. Asymptotics of cross sections for convex bodies. Preprint

    Google Scholar 

  7. Diaconis P., Freedman D. (1987) A dozen de Finetti-style results in search of a theory. Ann. Inst. H. Poincare 23:397–423

    MathSciNet  MATH  Google Scholar 

  8. Hensley D. (1979) Slicing the cube in ℝn and probability bounds for the measure of a central cube slice in ℝn by probability methods. Proc. Amer. Math. Soc. 73:95–100

    MathSciNet  MATH  Google Scholar 

  9. Koldobsky A. (1998) An application of the Fourier transform to sections of star bodies. Israel J. Math. 106:157–164

    Article  MathSciNet  MATH  Google Scholar 

  10. Koldobsky A. (1998) Intersection bodies in ℝ4. Adv. Math. 136:1–14

    Article  MathSciNet  MATH  Google Scholar 

  11. Koldobsky A. (1999) A generalization of the Busemann-Petty problem on sections of convex bodies. Israel J. Math. 110:75–91

    Article  MathSciNet  MATH  Google Scholar 

  12. Koldobsky A. A functional analytic approach to intersection bodies. GAFA, to appear

    Google Scholar 

  13. Laplace P.S. (1812) Th'eorie analytique des probabilit'es, Paris

    Google Scholar 

  14. Ledoux M. (1996) Isoperimetry and Gaussian analysis. Lecture Notes Math. 1648:165–296

    Article  MathSciNet  MATH  Google Scholar 

  15. Lutwak E. (1975) Dual cross-sectional measures. Rend. Acad. Naz. Lincei 58:1–5

    MathSciNet  MATH  Google Scholar 

  16. Meyer M., Pajor A. (1988) Sections of the unit ball of ℓ n q . J. Funct. Anal. 80:109–123

    Article  MathSciNet  MATH  Google Scholar 

  17. Milman V.D., Pajor A. (1989) Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In: Lindenstrauss J., Milman V.D. (Eds.) Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, 1376, Springer, Heidelberg, 64–104

    Chapter  Google Scholar 

  18. Polya G. (1913) Berechnung eines bestimmten integrals. Math. Ann. 74:204–212

    Article  MathSciNet  MATH  Google Scholar 

  19. Romik D. Randomized central limit theorems. Preprint

    Google Scholar 

  20. Sudakov V.N. (1978) Typical distributions of linear functionals in finite-dimensional spaces of higher dimension. Soviet Math. Dokl. 19:1578–1582

    MathSciNet  MATH  Google Scholar 

  21. Vaaler J.D. (1979) A geometric inequality with applications to linear forms. Pacific J. Math. 83:543–553

    Article  MathSciNet  MATH  Google Scholar 

  22. Voigt J. (2000) A concentration of mass property for isotropic convex bodies in high dimensions. Israel J. Math. 115:235–251

    Article  MathSciNet  MATH  Google Scholar 

  23. von Weizsäcker H. (1997) Sudakov's typical marginals, random linear functionals and a conditional central limit theorem. Prob. Theory and Related Fields 107:313–324

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vitali D. Milman Gideon Schechtman

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Koldobsky, A., Lifshits, M. (2000). Average volume of sections of star bodies. In: Milman, V.D., Schechtman, G. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 1745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107212

Download citation

  • DOI: https://doi.org/10.1007/BFb0107212

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41070-6

  • Online ISBN: 978-3-540-45392-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics