Skip to main content
Log in

Range of Brownian Motion with Drift

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let (B δ (t)) t ≥ 0 be a Brownian motion starting at 0 with drift δ > 0. Define by induction S 1=− inf t ≥ 0 B δ (t), ρ1 the last time such that B δ1)=−S 1, S 2=sup0≤ t ≤ρ 1 B δ (t), ρ2 the last time such that B δ2)=S 2 and so on. Setting A k =S k +S k+1; k ≥ 1, we compute the law of (A 1,...,A k ) and the distribution of (B δ (tl) − B δ l ); 0 ≤ t ≤ ρ l-1 − ρ l )2 ≤ lk for any k ≥ 2, conditionally on (A 1,...,A k ). We determine the law of the range R δ (t) of (B δ (s)) s≥ 0 at time t, and the first range time θδ (a) (i.e. θδ (a)=inf{t > 0; R δ (t) > a}). We also investigate the asymptotic behaviour of θ δ (a) (resp. R δ (t)) as a → ∞ (resp. t → ∞).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borodin A.N., and Salminen P. (2002). Handbook of Brownian motion—facts and Formulae Probability and its Applications, 2nd edn. Birkhäuser Verlag, Basel

    Google Scholar 

  2. Chong K.S., Cowan R., and Holst L. (2000). The ruin problem and cover times of asymmetric random walks and Brownian motions. Adv. Appl. Probab. 32(1):177–192

    Article  MATH  MathSciNet  Google Scholar 

  3. Durrett R. (1996). Probability : Theory and Examples, 2nd edn. Duxbury Press, Belmont CA

    Google Scholar 

  4. Feller W. (1951). The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statist. 22: 427–432

    Article  MathSciNet  Google Scholar 

  5. Glynn P.W. (1985). On the range of a regenerative sequence. Stoch. Process. Appl. 20(1):105–113

    Article  MATH  MathSciNet  Google Scholar 

  6. Imhof J.-P. (1985). On the range of Brownian motion and its inverse process. Ann. Prob. 13:1011–1017

    Article  MATH  MathSciNet  Google Scholar 

  7. Imhof J.-P. (1992). A construction of the Brownian path from BES3 pieces. Stoch. Process. Appl. 43(2):345–353

    Article  MATH  MathSciNet  Google Scholar 

  8. Protter Ph. (2004). Stochastic Integration and Differential Equations, Applications of Mathematics, (New York) 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

  9. Revuz D., and Yor M. (1999). Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, vol. 293 [Fundamental Principles of Mathematical Sciences] 3rd edn. Springer-Verlag, Berlin

    Google Scholar 

  10. Salminen P., and Vallois P. (2005). On first range times of linear diffusions. J. Theoret. Probab. 18(3):567–593

    Article  MathSciNet  MATH  Google Scholar 

  11. Siebenaler Y., and Vallois, P. (1999). Hitting times of the range of a birth and death random walk. Prépublication de l’Institut Élie Cartan de Nancy 1.

  12. Vallois P. (1993). Diffusion arrêtée au premier instant où l’amplitude atteint un niveau donné. Stoch. Stoch. Rep. 43(1–2):93–115

    MATH  MathSciNet  Google Scholar 

  13. Vallois P. (1995). Decomposing the Brownian path via the range process. Stoch. proc. App. 55:211–226

    Article  MATH  MathSciNet  Google Scholar 

  14. Vallois P. (1996). The range of a simple random walk on Z. Adv. Appl. Probab. 28(4):1014–1033

    Article  MATH  MathSciNet  Google Scholar 

  15. Vallois P., and Tapiero C.S. (1997). Range reliability in random walks. Math. Methods Oper. Res. 45(3):325–345

    Article  MATH  MathSciNet  Google Scholar 

  16. Williams D. (1974). Path decomposition and continuity of local time for one-dimensional diffusions. I. Proc. Lond. Math. Soc. (3) 28:738–768

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Tanré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanré, E., Vallois, P. Range of Brownian Motion with Drift. J Theor Probab 19, 45–69 (2006). https://doi.org/10.1007/s10959-006-0012-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-006-0012-7

Keywords

MSC 2000

Navigation