Skip to main content
Log in

On First Range Times of Linear Diffusions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper we consider first range times (with randomised range level) of a linear diffusion on R. Inspired by the observation that the exponentially randomised range time has the same law as a similarly randomised first exit time from an interval, we study a large family of non-negative 2-dimensional random variables (X,X′) with this property. The defining feature of the family is Fc(x,y)=Fc(x+y,0), ∀ x ≥ 0, y ≥ 0, where Fc(x,y):=P (X > x, X′ > y) We also explain the Markovian structure of the Brownian local time process when stopped at an exponentially randomised first range time. It is seen that squared Bessel processes with drift are serving hereby as a Markovian element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz I. Stegun (1970) Handbook of Mathematical Functions, 9th printing Dover Publications, Inc. New York

    Google Scholar 

  2. O. Barndorff-Nielsen P. Blaesild C. Halgreen (1978) ArticleTitleFirst hitting time models for generalized inverse Gaussian distribution Stoch. Proc. Appl. 7 49–54 Occurrence Handle10.1016/0304-4149(78)90036-4

    Article  Google Scholar 

  3. A.N. Borodin (1989) ArticleTitleDistributions of functionals of the Brownian local time, I Th. Probab. Appl. 34 IssueID3 385–401 Occurrence Handle10.1137/1134048

    Article  Google Scholar 

  4. Borodin N. A. (1999) ArticleTitleOn distribution of functionals of a Brownian motion stopped at the moment inverse to the range Zapiski Nauchn. Semin. POMI (Russian). 260 50–72

    Google Scholar 

  5. A.N. Borodin P. Salminen (2002) Handbook of Brownian Motion – Facts and Formulae EditionNumber2 Birkhäuser Basel, Boston, Berlin

    Google Scholar 

  6. K.S. Cheng R. Cowan L. Holst (2000) ArticleTitleThe ruin problem and cover times of asymmetric random walks and Brownian motions Adv. Appl. Probab. 32 IssueID1 177–192 Occurrence Handle10.1239/aap/1013540029

    Article  Google Scholar 

  7. L. Chosid R. Isaac (1978) ArticleTitleOn the range of recurrent Markov chains Ann. Probab. 6 680–687

    Google Scholar 

  8. L. Chosid R. Isaac (1980) ArticleTitleCorrection to “On the range of recurrent Markov chains” Ann. Probab. 8 1000

    Google Scholar 

  9. Dvoretsky A., Erdös P. (1951). Some problems on random walk in space. Second Berkeley Symp. Math. Stat. 353–368

  10. W. Feller (1951) ArticleTitleThe asymtotic distribution of the range of sums of independent random variables Ann. Math. Stat. 22 427–432

    Google Scholar 

  11. Fitzsimmons, P. J. (1998). Markov process with identical bridges. Electronic J. Probab., 3(12)

  12. P. Glynn (1985) ArticleTitleOn the range of a regenerative sequence Stoch. Proc. Appl. 20 105–113 Occurrence Handle10.1016/0304-4149(85)90019-5

    Article  Google Scholar 

  13. I.S. Gradshteyn I.M. Ryzhik (1980) Table of Integrals, Series and Products Academic Press New York

    Google Scholar 

  14. G. Hooghiemstra (1987) ArticleTitleOn functionals of the adjusted range process J. Appl. Probab. 24 IssueID2 252–257

    Google Scholar 

  15. Hsu P., March P. (1988). Brownian excursions from extremes. In: Meyer P.A., Azéma J., Yor M. (ed). Séminaire de Probabilités XXII, Number 1321 in Springer Lecture Notes in Math. Berlin, Heidelberg, New York, pp. 502–507

  16. J.P. Imhof (1985) ArticleTitleOn the range of Brownian motion and its inverse process Ann. Probab. 13 IssueID3 1011–1017

    Google Scholar 

  17. J.P. Imhof (1992) ArticleTitleA construction of the Brownian motion path from BES(3) pieces Stoch. Proc. Appl. 43 345–353 Occurrence Handle10.1016/0304-4149(92)90067-Z

    Article  Google Scholar 

  18. N.C. Jain S. Orey (1968) ArticleTitleOn the range of random walk Israel J. Math. 6 373–380

    Google Scholar 

  19. N.C. Jain W.E. Pruitt (1972) ArticleTitleThe range of random walk Sixth Berkeley Symp. Math. Stat. Probab. 3 31–50

    Google Scholar 

  20. H.P. McKean SuffixJr. (1963) ArticleTitleExcursions of a non-singular diffusion Z. Wahrscheinlichkeitstheorie verw. Gebiete. 1 230–239 Occurrence Handle10.1007/BF00532494

    Article  Google Scholar 

  21. Pitman J., Yor M. (1981). Bessel processes and infinitely divisible laws. In: Williams D. (ed). Stochastic Integrals, Number 851 in Springer Lecture Notes in Math., Berlin, Heidelberg, New York, pp. 285–370

  22. J. Pitman M. Yor (1982) ArticleTitleA decomposition of Bessel bridges. Z. Wahrscheinlichkeitstheorie verw Gebiete 59 425–457 Occurrence Handle10.1007/BF00532802

    Article  Google Scholar 

  23. J. Pitman M. Yor (1993) ArticleTitleDilatation d’espace temps réarrangments des trajectoires browniennes et quelques extensions d’une identité de Knight C.R. Acad. Sci. Paris Série I. 316 723–726

    Google Scholar 

  24. P. Salminen (1984) Brownian excursions revisited K.L. Chung E. Cinlar R.K. Getoor (Eds) Seminar in stochastic processes, 1983, Progress in probability and statistics. Birkhauser Boston, Basel, Stuttgart 161–188

    Google Scholar 

  25. P. Salminen (1984) ArticleTitleOne-dimensional diffusions and their exit spaces Math. Scand. 54 209–220

    Google Scholar 

  26. P. Salminen (1997) ArticleTitleOn last exit decomposition of linear diffusions Studia Sci. Math. Hungar. 33 251–262

    Google Scholar 

  27. M. Sharpe (1988) General Theory of Markov Processes Academic Press San Diego

    Google Scholar 

  28. S. Tapiero P. Vallois (1995) ArticleTitleMoments of the amplitude process in a random walk and approximations: computations and applications Operat. Res. 29 1–17

    Google Scholar 

  29. B.M. Troutman (1983) ArticleTitleWeak convergence of the adjusted range of cumulative sums of exchangeable random variables J. Appl. Probab. 20 IssueID2 297–304

    Google Scholar 

  30. P. Vallois (1991) ArticleTitleLa loi gaussienne inverse généralisée comme premier ou dernier temps de passage de diffusions Bull. Sc. Math. 2e Série. 115 301–368

    Google Scholar 

  31. P. Vallois (1991) ArticleTitleUne extension des théorèmes de Ray et Knight sur les temps locaux browniens Probab. Th. Rel. Fields. 88 445–482 Occurrence Handle10.1007/BF01192552

    Article  Google Scholar 

  32. P. Vallois (1993) ArticleTitleDiffusion arrêtée au premier instant oùl’amplitude atteint un niveau donné Stochastics and Stochastics Reports 43 93–115

    Google Scholar 

  33. P. Vallois (1995) ArticleTitleDecomposing the Brownian path via the range process Stochastic Processes and their Applications 55 211–226 Occurrence Handle10.1016/0304-4149(94)00044-T

    Article  Google Scholar 

  34. P. Vallois (1996) ArticleTitleThe range of a simple random walk on Z Adv. Appl. Probab. 28 1014–1033

    Google Scholar 

  35. S. Watanabe (1975) ArticleTitleOn time inversion of one-dimensional diffusion processes. Z. Wahrscheinlichkeitstheorie verw Gebiete 31 115–124 Occurrence Handle10.1007/BF00539436

    Article  Google Scholar 

  36. N. Watson G. (1948) A Treatise on the Theory of Bessel Functions EditionNumber2 Cambridge University Press London

    Google Scholar 

  37. D. Williams (1974) ArticleTitlePath decompositions and continuity of local time for one-dimensional diffusions Proc. London Math. Soc. 28 738–768

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paavo Salminen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salminen, P., Vallois, P. On First Range Times of Linear Diffusions. J Theor Probab 18, 567–593 (2005). https://doi.org/10.1007/s10959-005-3519-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-005-3519-4

Keywords

Navigation