Skip to main content
Log in

Existence and Uniqueness Theorems for the Pfaff Equation with Continuous Coefficients

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, the Pfaff equations with continuous coefficients are considered. Analogs of Peano’s existence theorem and Kamke’s theorem on the uniqueness of the solution to the Cauchy problem are established, and a method for approximate solution of the Cauchy problem for the Pfaff equation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Agarwal and V. Lakshmikantham, Uniqueness and Non-Uniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore (1993).

    Book  Google Scholar 

  2. J. A. C. Araújo, “On uniqueness criteria for systems of ordinary differential equations,” J. Math. Anal. Appl., 281, 264–275 (2003).

    Article  MathSciNet  Google Scholar 

  3. A. V. Arutyunov, “The coincidence point problem for set-valued mappings and Ulam–Hyers stability,” Dokl. Math., 89, No. 2, 188–191 (2014).

    Article  MathSciNet  Google Scholar 

  4. A. Azamov and A. O. Begaliyev, “Existence and uniqueness of the solution of a Cauchy problem for the Pfaff equation with continuous coefficients,” Uzb. Math. J., No. 2, 18–26 (2019).

  5. A. Azamov and A. O. Begaliev, “Existence theorem and method of approximate solution for the Pfaff equation with continuous coefficients,” Tr. IMM UrO RAN, 27, No. 3, 12–24 (2021).

    Google Scholar 

  6. A. Azamov, Sh. Suvanov, and A. Tilavov, “Studying behavior at infinity of vector fields on Poincaré’s sphere: revisited,” Qual. Theory Dyn. Syst., 14, No. 1, 2–11 (2015).

    Google Scholar 

  7. E. Bedford and M. Kalka, “Foliations and complex Monge–Ampère equations,” Commun. Pure Appl. Math., 30, 543–571 (1991).

    Article  Google Scholar 

  8. M. Brunella and M. L. Gustavo, “Bounding the degree of solutions to Pfaff equations,” Publ. Mat., 44, No. 2, 593–604 (2000).

    Article  MathSciNet  Google Scholar 

  9. ´E. Cartan, “Sur certaines expressions différentielles et le problème de Pfaff,” Ann. Sci. Éc. Norm. Supér. (3), 16, 239–332 (1899).

  10. H. Cartan, Differential Calculus. Differential Forms [Russian translation], Mir, Moscow (1971).

  11. D. Cerveau and A. Lins-Neto, “Holomorphic foliations in CP(2) having an invariant algebraic curve,” Ann. Inst. Fourier (Grenoble), 41, No. 4, 883–903 (1991).

    Article  MathSciNet  Google Scholar 

  12. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, TATA McGRAWHill Publishing Co. Ltd., New Dehli (1987).

    Google Scholar 

  13. S. C. Coutinho, “A constructive proof of the density of algebraic Pfaff equations without algebraic solutions,” Ann. Inst. Fourier (Grenoble), 57, No. 5, 1611–1621 (2007).

    Article  MathSciNet  Google Scholar 

  14. V. Dryuma, “On geometrical properties of the spaces defined by the Pfaff equations,” Bul. Acad. Ştiinţe Repub. Mold. Mat., 47, No. 1, 69–84 (2005).

    MathSciNet  Google Scholar 

  15. I. V. Gayshun, Completely Solvable Multidimensional Differential Equations [in Russian], Editorial URSS, Moscow (2004).

    Google Scholar 

  16. L. N. Gayshun, “Representation of solutions of completely integrable linear systems,” Diff. Uravn., 14, No. 4, 728–730 (1978).

    MathSciNet  Google Scholar 

  17. H. A. Hakopian and M. G. Tonoyan, “Partial differential analogs of ordinary differential equations and systems,” New York J. Math., 10, 89–116 (2004).

    MathSciNet  Google Scholar 

  18. C. K. Han, “Pfaffian systems of Frobenius type and solvability of generic overdetermined PDE systems,” In: Symmetries and Overdetermined Systems of Partial Differential Equations, Springer, New York, pp. 421–429 (2008).

  19. Ph. Hartman, Ordinary Differential Equations, John Willey & Sons, New York (1964).

    Google Scholar 

  20. R. Howard, Methods of Thermodinamics, Blaisdell Publ. Comp., New York (1965).

    Google Scholar 

  21. N. A. Izobov, “On the existence of linear Pfaffian systems whose set of lower characteristic vectors has a positive plane mesure,” Differ. Equ., 33, No. 12, 1626–1632 (1997).

    Google Scholar 

  22. N. A. Izobov and A. S. Platonov, “Construction of a linear Pfaff equation with arbitrarily given characteristics and lower characteristic sets,” Differ. Equ., 34, No. 12, 1600–1607 (1998).

    MathSciNet  Google Scholar 

  23. J. P. Jouanolou, Equations de Pfaff Algébriques, Springer–Verlag, Berlin–Heidelberg (1979).

    Book  Google Scholar 

  24. S. Lefschetz, Differential Equations: Geometric Theory, Interscience Publishers, New York–London (1963).

    Google Scholar 

  25. S. Luzatto, S. Türeli, and K. War, “A Frobenius theorem for corank-1 continuous distributions in dimensions two and three,” ArXiv, 1411.5896v5 [math.DG] (2016).

  26. S. Luzatto, S. Türeli, and K. War, “Integrability of continuous bundles,” ArXiv, 1606.00343v2 [math. CA] (2016).

  27. S. Mardare, “On Pfaff systems with Lp coefficients and their applications in differential geometry,” J. Math. Pures Appl., 84, 1659–1692 (2005).

    Article  MathSciNet  Google Scholar 

  28. S. Mardare, “On Pfaff systems with Lp coefficients in dimension two,” C.R. Math. Acad. Sci. Paris, 340, 879–884 (2005).

  29. T. Mejstrik, “Some remarks on Nagumo’s theorem,” Czech. Math. J., 62, 235–242 (2012).

    Article  MathSciNet  Google Scholar 

  30. L. G. Mendes, “Bounding the degree of solutions to Pfaff equations,” Publ. Mat., 44, No. 2, 593–604 (2000).

    MathSciNet  Google Scholar 

  31. P. Musen, On the Application of Pfaff’s Method in the Theory of Variations of Astronomical Constants, NASA, Washington (1964).

    Google Scholar 

  32. A. I. Perov, “On one generalization of the Frobenius theorem,” Diff. Uravn., 5, No. 10, 1881–1884 (1969).

    Google Scholar 

  33. P. Popescu and M. Popescu, “Some aspects concerning the dynamics given by Pfaff forms,” Physics AUC, 21, 195–202 (2011).

    Google Scholar 

  34. K. S. Rashevskiy, Geometric Theory of Partial Differential Equations, Springer, New York (2001).

    Google Scholar 

  35. Y. T. Siu, Partial Differential Equations with Compatibility Condition, https://www.coursehero.com/file/8864495/Lecture-notes-1/.

  36. N. V. Spichekovo, “On the behaviour of integral surfaces of a Pfaff equation with a nonclosed singular curve,” Differ. Equ., 41, No. 10, 1509–1513 (2005).

    Article  MathSciNet  Google Scholar 

  37. K. R. Unni, “Pfaffian differential expressions and equations,” Master’s Degree Thesis, Logan: Utah State Univ., 1961.

    Google Scholar 

  38. N. D. Vasilevich and T. N. Prokhorovich, “A linear Pfaff system of three equations on CPm,” Differ. Equ., 39, No. 6, 896–898 (2003).

    Article  MathSciNet  Google Scholar 

  39. H. Źoladek, “On algebraic solutions of algebraic Pfaff equations,” Studia Math., 114, No. 2, 117–126 (1995).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Abduganiev.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 67, No. 4, Science — Technology — Education — Mathematics — Medicine, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abduganiev, A.A., Azamov, A.A. & Begaliev, A.O. Existence and Uniqueness Theorems for the Pfaff Equation with Continuous Coefficients. J Math Sci 278, 385–394 (2024). https://doi.org/10.1007/s10958-024-06928-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-06928-1

Keywords

Navigation