Skip to main content
Log in

PRINCIPAL COMPONENT ANALYSIS AND OPTIMAL PORTFOLIO

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we try to apply the advantages of principal component analysis (PCA) and online learning to the calculation of optimal portfolio investments. Each of these methods is widely used separately. This is done in order to make it possible to use online learning algorithms for high-dimension portfolios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  1. Markowitz H. Portfolio selection. J. financ. v. 7. n. 1. p.77-91. 1952.

    Google Scholar 

  2. Brandt M. Portfolio choice problems. Handbook financ. economet. n. 1. p. 269-336. 2009.

    Google Scholar 

  3. Steinbach M.C. Markowitz revisited: mean-variance models in financial portfolio analysis. SIAM rev. v. 43. n. 1. p. 31-85. 2001.

    Article  MathSciNet  MATH  Google Scholar 

  4. Konno H., Yamazak H. Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manag. sci. v. 37. n.5. p. 519-531. 1991.

    Article  Google Scholar 

  5. Basak S., Shapiro A. Value-at-risk-based risk management: optimal policies and asset prices. Rev. financ. stud. v. 14. n. 2. p. 371-405. 2001.

    Article  Google Scholar 

  6. Rochafellar R., Uryasev S. Optimization of conditional value-at-risk. J. risk. n. 2. p. 21-42. 2000.

    Google Scholar 

  7. Fabozzi F., Huang D., Zhou G. Robust portfolios: contributions from operations research and finance. Ann. oper. res. v. 176. n. 1. p. 191-220. 2010.

    Article  MathSciNet  MATH  Google Scholar 

  8. Schlesinger M., Glavach V. Ten lectures on structural and statistical pattern recognition. Naukova dumka. 546 p. 2004.

  9. Pflug G., Pohl M. A review on ambiguity in stochastic portfolio optimization. Set-valued var. anal. n. 26. p. 733-757. 2018.

    Article  MathSciNet  MATH  Google Scholar 

  10. Wozabal D. A framework for optimization under ambiguity. Ann. oper. res. v. 193. n. 1. p. 21-47. 2002.

    Article  MathSciNet  MATH  Google Scholar 

  11. Pflug G., Wozabal D. Ambiguity in portfolio selection. Quant. finan. v. 7. n. 4. p. 435-442. 2007.

    Article  MathSciNet  MATH  Google Scholar 

  12. Beliavsky G., Danilova N., Logunov A. Unsupervised learning and robust optimization in the portfolio problem. Bulletin of higher educational institutes. North-Caucasus region. Natural sciences. n. 4. p. 4-9. 2020.

  13. Rokach L., Oded M. Clustering methods. Data mining and knowledge discovery handbook. Springer US. p. 321-352. 2005.

    Google Scholar 

  14. Ben-Tal, Chaoui, Nemirovski. Robust optimization. Princeton university press. p. 542. 2009.

  15. Bandi, Bertsimas. Robust option pricing. European journal of operational research. v. 239. p. 842-853. 2014.

    Article  MathSciNet  MATH  Google Scholar 

  16. Danilova N., Yao K. The Minimal Ellipsoid and Robust Methods in the Optimal Portfolio Problem. Engineering Letters. v. 30. n. 4. p. 1465-1469. 2022.

    Google Scholar 

  17. Boudt K., Rousseeuv P., Vanduffel S., Verdonck T. The minimum regularized covariance determinant estimator. Statistics and computing. v. 30. p. 113-128. 2019.

    Article  MathSciNet  MATH  Google Scholar 

  18. Rousseeuv P., van Driessen K. A fast algorithm for the minimum covariance determinant estimator. Technometrics. v. 41. p. 212-223. 1999.

    Article  Google Scholar 

  19. Boyd S., Vanderberghe L. Convex optimization. Cambridge university press. 716 p. 2009.

  20. Hampel F. A general quantitative definition of robustness. Ann. of mathematical statistics. v. 42. p. 1887-1996. 1971.

    Article  MathSciNet  MATH  Google Scholar 

  21. Rousseeuv P., Grossman W., Pflug G., Vincze I., Wertz W. Multivariate estimation with high breakdown point. Mathematical statistics and applications. p. 283-297. 1985.

  22. Tichonov A., Arsenin V. Methods for solving ill-posed problems. M.: Nauka. 430 p. 1974.

  23. Pflug G., Pohl M. A review on ambiguity in stochastic portfolio optimization. Set-valued and variational analysis. v. 26. p. 733-757. 2018.

    Article  MathSciNet  MATH  Google Scholar 

  24. Blanchety G., Chenz L., Zhoux X. Distributionally robust mean-variance portfolio selection with Wasserstein distances. Management science. 2021.

  25. Pearson K. On line and planes of closet fit to systems of points in space. Philosophical magazine. v. 2. p. 559-572. 1901.

    MATH  Google Scholar 

  26. Egloff M., Leippold M., Wu L. The term structure of variance swap rates and optimal variance swap investments. Journal of financial and quantitative analysis. v. 45. p. 1279-1310. 2010.

    Article  Google Scholar 

  27. Ding Y., Yingying L., Xinghua Z. High dimensional minimum variance portfolio estimation under statistical factor models. Journal of econometrics v. 222. p. 502-515. 2021.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kreinin A., Merkoulovitch L., Rosen D., Zerbs M. Principal component analysis in quasi Monte-Carlo simulation. Algo research quarterly. v.1. n.2. p. 21-29. 1988.

    Google Scholar 

  29. Peng Y., Albuquerque P., Nascimento I. Machado J. Between nonlinearities, complexity: an application on portfolio selection using kernel principal component analysis. Entropy. v. 21. n. 376. p. 2-27. 2019.

    MathSciNet  Google Scholar 

  30. Brillinger D. Time series: Data analysis and theory. Classic and applied mathematics. SIAM. 2001.

    Book  MATH  Google Scholar 

  31. Ait-Sahalla Y., Xiu D. Principal component analysis of high-frequency data. Journal of the american statistical association. v. 114. n. 525. p. 287-303. 2019.

    Article  MathSciNet  MATH  Google Scholar 

  32. Cover T. Universal portfolios. Math. financ. v. 1. p. 1-19. 1991.

    Article  Google Scholar 

  33. Helmbold D. Online portfolio selection using multiplicative updates. Mathematical finance. v. 8. n. 4. p. 325-347. 1998.

    Article  MATH  Google Scholar 

  34. Agarwal A. Algorithms for portfolio management based on the Newton method. Proceedings of the 23rd international conference on machine learning. p. 9-16.

  35. Luo H., Wei C., Zheng K. Efficient online portfolio with logarithmic regret. Proceedings of the 32nd international conference on neural information processing systems. p. 8245-8255.

  36. Van Erven T. Open problem: fast and optimal online portfolio selection. Conference on learning theory. p. 3864-3869. 2020.

  37. Shalev-Shwartz S. Online learning and online convex optimization. Found. trends mach. learn. v. 4. p. 107-94. 2012.

    Article  MATH  Google Scholar 

  38. Hazan E. Introduction to online convex optimization. Found. trends optim. v. 2. p. 157-325. 2016.

    Article  Google Scholar 

  39. McMahan HB. A survey of algorithms and analysis for adaptive online learning. J. mach. learn. res. v. 18. p. 1-50. 2018.

    MathSciNet  Google Scholar 

  40. Orabona F. A modern introduction to online learning. arXiv:1912.13213 [cs.LG]. 2019.

  41. Bau D., Trefethen, L. Numerical linear algebra. Philadelphia: society for industrial and applied mathematics. (Lecture 31). 1997.

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Beliavsky.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beliavsky, G., Danilova, N. & Yao, K. PRINCIPAL COMPONENT ANALYSIS AND OPTIMAL PORTFOLIO. J Math Sci 271, 368–377 (2023). https://doi.org/10.1007/s10958-023-06526-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06526-7

Keywords

Navigation