Skip to main content
Log in

LIKELIHOOD-BASED ANALYSIS IN MIXTURE GLOBAL VARs

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper we propose a mixture global vector autoregressive model with exogenous variables to study country/region interdependencies that exist between national and international variables in the world economy. This model generalizes the linear one introduced by Pesaran et al. (Journal of Business & Economic Statistics 22(2):129–162, 2004) taking into account the possibility of contagion effects. Then, we give a complete solution of the above mixture global model, discuss its stability properties, and provide a likelihood-based analysis of the country/region specific models. Finally, a simulation experiment is presented to demonstrate the utility of the proposed algorithm and the nature of the problems under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ailliot, P., and Péne, F. (2015) Consistency of the maximum likelihood estimate for non-homogeneous Markov-switching models. ESAIM: Probability and Statistics 19, 268–292.

  2. Balakrishnan, S., Wainwright, M.J., and Yu, B. (2017). Statistical guarantees for the EM algorithm: From population to sample-based analysis. The Annals of Statistics 45 (1), 77–120.

    Article  MathSciNet  MATH  Google Scholar 

  3. Benesch, T. (2001). The Baum-Welch algorithm for parameter estimation of Gaussian autoregressive mixture models. Journal of Mathematical Sciences 105 (6), 2515–2518.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bibi, A., and Ghezal, A. (2017). Markov-switching bilinear GARCH models: Structure and estimation. Comm. Statistics: Theory and Methods 47 (2), 307–323.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bougerol, P., and Picard, N. (1992). Strict stationarity of generalized autoregressive processes. Annals of Probability 20, 1714–1729.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cavicchioli, M. (2016a). Weak VARMA representations of regime-switching state-space models. Statistical Papers 57, 705–720.

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavicchioli M. (2016b). Statistical Analysis of Mixture Vector Autoregressive Models. Scandinavian Journal of Statistics 43 (4), 1192–1213.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chrétien, S., and Hero, A.O. (2008). On EM algorithms and their proximal generalizations. ESAIM: Probability and Statistics 12, 308–326.

  9. De Bandt, O., and Hartmann, P. (2000). Systemic risk: a survey. Working paper no. 35, European Central Bank, Frankfurt, Germany.

  10. Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. Stat. Methodol. 39 (1), 1–38.

    MathSciNet  MATH  Google Scholar 

  11. Douc, R., Moulines, E., and Ryden, T. (2004). Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. Annals of Statistics 32, 2254–2304.

    Article  MathSciNet  MATH  Google Scholar 

  12. Fong, P.W., Li, W.K., Yau, C.W., and Wong, C.S. (2004). On a mixture vector autoregressive model. Research Report no. 369, Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong, China.

  13. Fong, P.W., Li, W.K., Yau, C.W., and Wong, C.S. (2007). On a mixture vector autoregressive model. The Canadian Journal of Statistics 35 (1), 135–150.

    Article  MathSciNet  MATH  Google Scholar 

  14. Francq, C., and Zakoïan, J.M. (2001). Stationarity of multivariate Markov switching ARMA models. Journal of Econometrics 102, 339–364.

    Article  MathSciNet  MATH  Google Scholar 

  15. Francq, C., and Zakoïan, J.M. (2002). Autocovariance structure of powers of switching-regime ARMA processes. ESAIM: Probability and Statistics 6, 259–270.

  16. Ghezal, A. (2023). A doubly Markov switching AR model: Some probabilistic properties and strong consistency. Journal of Mathematical Sciences, https://doi.org/10.1007/s10958-023-06262-y.

    Article  Google Scholar 

  17. Hu, Y., and Schennach, S.M. (2008). Instrumental variable treatment of nonclassical measurement error models. Econometrica 76 (1), 195–216.

    Article  MathSciNet  MATH  Google Scholar 

  18. Karabutov, N.N., and Feklin, V.G. (2016). Adaptive identification of systems with distributed lags. Journal of Mathematical Sciences 216, 649–666.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kasahara, H., and Shimotsu, K. (2019). Asymptotic properties of the maximum likelihood estimator in regime switching econometric models. Journal of Econometrics 208, 442–467.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kiefer, N.M. (1978). Discrete parameter variation: Efficient estimation of a switching regression model. Econometrica 46, 427–434.

    Article  MathSciNet  MATH  Google Scholar 

  21. Krolzig, H.M. (1997). Markov Switching Vector Autoregressions: Modelling, Statistical Inference and Application to Business Cycle Analysis. Springer-Verlag, Berlin-Heidelberg-New York.

    Book  MATH  Google Scholar 

  22. Li, X., Safikhani, A., and Shojaie, A. (2022). Estimation of high-dimensional Markov-switching VAR models with an approximate EM algorithm. arXiv:2210.07456

  23. Lin, W., Feng, R., and Li, H. (2015). Regularization methods for high-dimensional instrumental variables regressions with an application to genetical genomics. Journal Amer. Stat. Assoc. 110 (509), 270–288.

    Article  MathSciNet  MATH  Google Scholar 

  24. Lütkepohl, H. (1991). Introduction to Multiple Time Series Analysis. Springer Verlag, Berlin-Heidelberg-New York.

    Book  MATH  Google Scholar 

  25. Ng, S.K., Krishnan, T., and Mc Lachlan, G.J. (2012). The EM algorithm. in: Handbook of Computational Statistics, Springer Verlag, Berlin-Heidelberg, 139–172.

    Chapter  Google Scholar 

  26. Pesaran, M.H., Schuermann, T., and Weiner, S.M. (2004). Modeling regional interdependencies using a global error-correcting macroeconomic model. Journal of Business & Economic Statistics 22 (2), 129–162.

    Article  MathSciNet  Google Scholar 

  27. Pesaran, M.H., and Pick, A. (2007). Econometric issues in the analysis of contagion. Journal of Economic Dynamics and Control 31 (4), 1245–1277.

    Article  MathSciNet  MATH  Google Scholar 

  28. Qu, Z., Zhuo, F. (2021). Likelihood ratio based tests for Markov regime switching. The Review of Economic Studies 88 (2), 937–968.

    Article  MathSciNet  MATH  Google Scholar 

  29. Windmeijer, F., Liang, X., Hartwig, F.P., and Bowden, J. (2021). The confidence interval method for selecting valid instrumental variables. Journal Royal Stat. Soc. Ser. B. Stat Methodol. 83, 752–776.

    Article  MATH  Google Scholar 

  30. Zhao, R., Li, Y., and Sun, Y. (2020). Statistical convergence of the EM algorithm on Gaussian mixture models. Electronic Journal of Statistics 14 (1), 632–660.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the Editor in Chief, Professor Alexey Karapetyants, the Guest Associate Editor, Professor Andreeva Tatiana and the three anonymous referees for their very useful suggestions and remarks which were most valuable for improvement of the final version of the paper.

Funding

This work is financially supported by a research grant (FAR 2022) of the University of Modena and Reggio E., Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maddalena Cavicchioli.

Ethics declarations

Compliance with Ethical Standards

Not applicable

Conflict of interest

The author declares no competing interests.

Appendix

Appendix

Treating (weakly) exogenous variables. The instrumental variable (IV) estimation is a general technique to handle problems associated with (weak) exogeneity. More precisely, IV is used when an explanatory variable of interest is correlated with the error term, in which case the standard estimation methods give biased results. Even in the simple univariate case, the choice of IV is not easy to make and it depends on the field of application. A simple check is to compute the linear correlation of IV with the suspected variable, and its correlation with the dependent variable. If the linear correlation is weak, then expect results of poor reliability, if the sample is not very large. The IV is correlated with \({\textbf{x}}_{it}^{*}\), but uncorrelated with the model error term \({\varvec{\epsilon }}_{it}^{(m)}\) by assumption or by construction. IV is used to replace the problematic variable \({\textbf{x}}_{it}^{*}\). More formally, the IV \({\textbf{v}}_{it}\) for the variable of concern \({\textbf{x}}_{it}^{*}\) satisfies \({\text {cov}} ({\textbf{v}}_{it}, {\textbf{x}}_{it}^{*}) \ne {\varvec{0}}\), \({\text {cov}} ({\textbf{v}}_{it}, {\varvec{\epsilon }}_{it}^{(m)}) = {\varvec{0}}\), and also it is not correlated with any unobservable factors influencing the dependent variable \({\textbf{x}}_{it}\). In the multivariate setting, the selection of IV seems to be more involved. Selecting IV requires three conditions: (1) IV is associated with the exposure; (2) IV only affects the outcome through the exposure; and (3) the effect of IV on the outcome is uncofounded. If the preceding rules are satisfied, the IV technique completely eliminates the simultaneous equation bias only in large samples. In finite samples, the larger the excess of observations over IV, the more the bias is reduced. General methodologies for selecting IVs in the multivariate setting have been provided by Hu and Schennach [17], Lin et al. [23], and Windmeijer et al. [29].

Proof of Theorem 4.1

The maximum likelihood estimates are obtained forming the Lagrangean

$$\mathcal{J}({\varvec{\theta }}_{i }, {\varvec{\pi }}_{i }) = \mathcal{L} ({\varvec{\theta }}_{i }, {\varvec{\pi }}_{i }) + \lambda (1 - \pi _{ i 1} - \cdots - \pi _{i M})$$

and setting the derivatives with respect to the elements of \({\varvec{\theta }}_{i m}\) and \(\pi _{i m}\) equal to zero (i.e., first order conditions FOC). From (8) we get

$$\begin{aligned} \frac{\partial \, \mathcal{L}}{\partial \, {\textbf{a}}_{i }^{(m)}}&= \sum _{t = 1}^T \, \frac{1}{f({\textbf{x}}_{i t} | {\textbf{x}}_{i, t-1}; {\varvec{\theta }}_{i }, {\varvec{\pi }}_{i }) } \, \frac{\partial \, f({\textbf{x}}_{i t} | {\textbf{X}}_{i, t-1}; {\varvec{\theta }}_{i }, {\varvec{\pi }}_{i })}{\partial \, {\textbf{a}}_{i }^{(m)}}\\&= \sum _{t = 1}^T \, [{\varvec{\Sigma }}_{i i}^{(m)} ]^{- 1} \, {\varvec{\epsilon }}_{i t}^{(m)} \, \xi _{i m t | t} = 0 \end{aligned}$$

where \({\varvec{\epsilon }}_{i t}^{(m)}\) comes from (1). Then we obtain

$$\sum _{t = 1}^T \, ({\textbf{x}}_{i t} - {\widehat{\textbf{a}}}_{i}^{(m)} \, - \, \sum _{j = 1}^{p_i} \, {\widehat{\Phi }}_{i j}^{(m)} \, {\textbf{x}}_{i, t - j} \, - \, \sum _{h = 0}^{q_i}\, {\widehat{\varvec{\Lambda }}}_{i h}^{(m)} \, {\textbf{x}}_{i, t - h}^{*} ) \, \xi _{i m t | t} \, = \, 0. \qquad (A1)$$

Furthermore, from (8) we get

$$\frac{\partial \, \mathcal{L}}{\partial \, [{\varvec{\Sigma }}_{i i}^{(m)}]^{- 1}} \, = \, \sum _{t = 1}^T \, \frac{1}{2} \, \left( {\varvec{\Sigma }}_{i i}^{(m)} \, - \, {\varvec{\epsilon }}_{i t}^{(m)} \, [{\varvec{\epsilon }}_{i t}^{(m)}]^{'} \right) \, \xi _{i m t | t} \, = \, 0$$

from which (13) follows. We also have

$$\frac{\partial \, \mathcal{L}}{\partial \, {\varvec{\Phi }}_{i j}^{(m)}} \, = \, \sum _{t = 1}^T \, [{\varvec{\Sigma }}_{i i}^{(m)}]^{- 1} \, {\varvec{\epsilon }}_{i t}^{(m)} \, {\textbf{x}}_{i, t - j}^{'} \, \xi _{i m t | t} \, = \, 0 \qquad \qquad \qquad \qquad \qquad \qquad (A2)$$

for \(j = 1, \dots , p_i\), and \({\varvec{\epsilon }}_{i t}^{(m)}\) comes from (1). Finally, we get

$$\frac{\partial \, \mathcal{L}}{\partial \, {\varvec{\Lambda }}_{i h}^{(m)}} \, = \, \sum _{t = 1}^T \, [{\varvec{\Sigma }}_{i i}^{(m)}]^{- 1} \, {\varvec{\epsilon }}_{i t}^{(m)} \, {\textbf{x}}_{i, t - h}^{* '} \, \xi _{i m t | t} \, = \, 0 \qquad \qquad \qquad \qquad \qquad (A3)$$

for \(h= 0, \dots , q_i\). From (A1)–(A3) we obtain the linear system

$$\begin{aligned} {\textbf{a}}_{i }^{(m)} \, S_{i m} \, + \, {\varvec{\Phi }}_{i}^{(m)} \, {\textbf{B}}_{i m}^{'} \, + \, {\varvec{\Lambda }}_{i}^{(m)} \, {\textbf{B}}_{i m}^{* '} \,&= \, {\textbf{f}}_{i m} \\ {\textbf{a}}_{i }^{(m)} \, {\textbf{B}}_{i m} \, + \, {\varvec{\Phi }}_{i}^{(m)} \, {\textbf{A}}_{i m} \, + \, {\varvec{\Lambda }}_{i}^{(m)} \, {\textbf{D}}_{i m}^{ '} \,&= \, {\textbf{H}}_{i m} \\ {\textbf{a}}_{i }^{(m)} \, {\textbf{B}}_{i m}^{*} \, + \, {\varvec{\Phi }}_{i}^{(m)} \, {\textbf{D}}_{i m} \, + \, {\varvec{\Lambda }}_{i}^{(m)} \, {\textbf{A}}_{i m}^{ *} \,&= \, {\textbf{K}}_{i m} \end{aligned}$$

which can be written, more compactly, as

$$\begin{pmatrix} {\textbf{a}}_{i}^{(m)}&\,&{\varvec{\Omega }}_{i}^{(m)} \end{pmatrix} \, \begin{pmatrix} {S}_{i m} &{} {\textbf{U}}_{i m} \\ {\textbf{U}}_{i m}^{'} &{} {\textbf{W}}_{i m} \end{pmatrix} \, = \, \begin{pmatrix} {\textbf{f}}_{i m}&{\textbf{J}}_{i m} \end{pmatrix}.$$

This gives (12). Finally, we have

$$\frac{\partial \, \mathcal{J}}{\partial \, \pi _{i m}} \, = \, \frac{\partial \, \mathcal{L}}{\partial \, \pi _{i m}} \, - \, \lambda \, = \, 0$$

where

$$\frac{\partial \, \mathcal{L}}{\partial \, \pi _{i m}} = \pi _{i m}^{- 1} \, \sum _{t = 1}^T \, \xi _{i m t | t} \, = \, \pi _{i m}^{- 1} \, S_{i m}.$$

Thus we obtain

$$\pi _{i m} \, \lambda \, = \, \sum _{t = 1}^T \, \xi _{i m t | t}.$$

Summing up over \(m = 1, \dots , M\) produces

$$\lambda = \lambda \, \sum _{m = 1}^M \, \pi _{i m} \, = \, \sum _{t = 1}^T \, \sum _{m = 1}^M \, \xi _{i m t | t} \, = \, \sum _{t = 1}^T \, 1 \, = \, T$$

hence

$${\widehat{\pi }}_{i m} = \lambda ^{- 1} \, S_{i m} \, = \, T^{-1} \, S_{i m}$$

as in the last sentence of Theorem 4.1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavicchioli, M. LIKELIHOOD-BASED ANALYSIS IN MIXTURE GLOBAL VARs. J Math Sci 271, 341–353 (2023). https://doi.org/10.1007/s10958-023-06509-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06509-8

Keywords

Mathematics Subject Classification (2010)

Navigation