Skip to main content
Log in

On the boundary behavior of weak (p; q)-quasiconformal mappings

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let Ω and \( \tilde{\Omega} \) be domains in the Euclidean space ℝn. We study the boundary behavior of weak (p, q)-quasiconformal mappings φ : Ω → \( \tilde{\Omega} \), n – 1 < qp < n. The suggested method is based on the capacitary distortion properties of the weak (p, q)-quasiconformal mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Adamowicz and N. Shanmugalingam, “Non-conformal Loewner type estimates for modulus of curve families,” Ann. Acad. Sci. Fenn. Math., 35, 609–626 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Ahlfors, Lectures on quasiconformal mappings. D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966.

  3. C. Carathéodory, “Über die Begrenzung einfach zusammenhängender Gebiete,” Math. Ann., 73, 323–370 (1913).

    Article  MathSciNet  MATH  Google Scholar 

  4. F. W. Gehring, “Lipschitz mappings and the p-capacity of rings in n-space,” Advances in the Theory of Riemann Surfaces, Princeton, University Press, 175–193 (1971).

  5. V. Gol’dshtein, L. Gurov, and A. Romanov, “Homeomorphisms that induce monomorphisms of Sobolev spaces,” Israel J. Math., 91, 31–60 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Gol’dshtein, V. Pchelintsev, and A. Ukhlov, “On the First Eigenvalue of the Degenerate p-Laplace Operator in Non-convex Domains,” Integral Equations Operator Theory, 90, 43 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Gol’dshtein, E. Sevost’yanov, and A. Ukhlov, Composition operators on Sobolev spaces and weighted moduli inequalities, Math. Reports (accepted).

  8. V. M. Gol’dshteinand and V. N. Sitnikov, “Continuation of functions of the class W1p across Hölder boundaries,” Imbedding theorems and their applications, Trudy Sem. S. L. Soboleva, 1, 31–43 (1982).

  9. V. Gol’dshtein and A. Ukhlov, “Weighted Sobolev spaces and embedding theorems,” Trans. Amer. Math. Soc., 361, 3829–3850 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Gol’dshtein and A. Ukhlov, “On the first Eigenvalues of Free Vibrating Membranes in Conformal Regular Domains,” Arch. Rational Mech. Anal., 221(2), 893–915 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Gol’dshtein and A. Ukhlov, “The spectral estimates for the Neumann-Laplace operator in space domains,” Adv. in Math., 315, 166–193 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. M. Gol’dshtein and S. K. Vodop’yanov, “Metric completion of a domain by means of a conformal capacity that is invariant under quasiconformal mappings,” Dokl. Akad. Nauk SSSR, 238, 1040–1042 (1978).

    MathSciNet  Google Scholar 

  13. P. Hajlasz and P. Koskela, “Sobolev met Poincaré,” Mem. Amer. Math. Soc., 145, 1–101 (2000).

    MATH  Google Scholar 

  14. J. Heinonen, Lectures on analysis on metric spaces, Springer Science+Business Media, New York, 2001.

  15. J. Heinonen and P. Koskela, “Mappings with integrable dilatation,” Arch. Rational Mech. Anal., 125, 81–97 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Hesse, “A p-extremal length and p-capacity equality,” Ark. Mat., 13, 131–144 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Koskela and Z. Zhu, “Sobolev Extensions Via Reflections,” J. Math. Sci., 268, 376–401 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Koskela, A. Ukhlov, and Z. Zhu, “The volume of the boundary of a Sobolev (p, q)-extension domain,” J. Funct. Anal., 283, 109703 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Kovtonyuk and V. Ryazanov, “On boundary behavior of spatial mappings,” Rev. Roumaine Math. Pures Appl., 61, 57–73 (2016).

    MathSciNet  MATH  Google Scholar 

  20. V. I. Kruglikov and V. I. Paikov, “Capacity and prime ends of a space domain,” Dokl. Akad. Nauk Ukr. SSR, Ser. A 5, 154, 10–13 (1987).

    Google Scholar 

  21. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer Science + Business Media, LLC, New York, 2009.

  22. V. G. Maz’ya, “Weak solutions of the Dirichlet and Neumann problems,” Trudy Moskov. Mat. Ob-va., 20, 137–172 (1969).

    MathSciNet  Google Scholar 

  23. V. Maz’ya, Sobolev spaces: with applications to elliptic partial differential equations, Springer, Berlin/Heidelberg, 2010.

    Google Scholar 

  24. V. G. Maz’ya and V. P. Havin, “Non-linear potential theory,” Russian Math. Surveys, 27, 71–148 (1972).

    Article  Google Scholar 

  25. A. Menovschikov and A. Ukhlov, “Composition operators on Sobolev spaces and Q-homeomorphisms,” Comput. Methods Funct. Theory (accepted).

  26. N. Näkki, “Boundary behavior of quasiconformal mappings in n-space,” Ann. Acad. Sci. Fenn. Ser. A., 484, 1–50 (1970).

    MathSciNet  MATH  Google Scholar 

  27. R. Näkki, “Extension of Loewner’s capacity theorem,”Trans. Amer. Math. Soc., 180, 229–236 (1973).

    MathSciNet  MATH  Google Scholar 

  28. I. S. Ovchinnikov, “Prime ends of a certain class of space regions,” Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat., 189, 96–103 (1966).

    MathSciNet  Google Scholar 

  29. V. A. Shlyk, “The equality between p-capacity and p-modulus,” Siberian Math. J., 34, 1196–1200 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  30. E. S. Smolovaya, “Boundary behavior of ring Q-homeomorphisms in metric spaces,” Ukr. Math. J., 62(5), 785–793 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  31. G. D. Suvorov, The generalized “length and area principle” in mapping theory, Naukova Dumka, Kiev, 1985.

    MATH  Google Scholar 

  32. A. Ukhlov, “On mappings, which induce embeddings of Sobolev spaces,” Siberian Math. J., 34, 185–192 (1993).

    MathSciNet  Google Scholar 

  33. A. Ukhlov, “Differential and geometrical properties of Sobolev mappings,” Matem. Notes, 75, 291–294 (2004).

    Article  MATH  Google Scholar 

  34. J. Väisälä, Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Math. 229, Springer Verlag, Berlin, 1971.

  35. S. K. Vodop’yanov, Taylor Formula and Function Spaces, Novosibirsk Univ. Press, 1988.

  36. S. K. Vodop’yanov and V. M. Gol’dshtein, “Structure isomorphisms of spaces W1n and quasiconformal mappings,” Siberian Math. J., 16, 224–246 (1975).

    Google Scholar 

  37. S. K. Vodop’yanov, V. M. Gol’dshtein, and Yu. G. Reshetnyak, “On geometric properties of functions with generalized first derivatives,” Uspekhi Mat. Nauk, 34, 17–65 (1979).

    MathSciNet  MATH  Google Scholar 

  38. S. K. Vodop’yanov and A. D. Ukhlov, “Sobolev spaces and (P,Q)-quasiconformal mappings of Carnot groups,” Siberian Math. J., 39, 665–682 (1998).

  39. S. K. Vodop’yanov and A. D. Ukhlov, “Superposition operators in Sobolev spaces,” Russian Mathematics (Izvestiya VUZ), 46(4), 11–33 (2002).

    MathSciNet  MATH  Google Scholar 

  40. S. K. Vodop’yanov and A. D. Ukhlov, “Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. I,” Siberian Adv. Math., 14(4), 78–125 (2004).

    MathSciNet  MATH  Google Scholar 

  41. V. A. Zorich, “On boundary correspondence for Q-quasiconformal mappings of a sphere,” Dokl. Akad. Nauk SSSR, 145, 31–34 (1962).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Gol’dshtein.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 19, No. 4, pp. 478–488, October–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gol’dshtein, V., Sevost’yanov, E. & Ukhlov, A. On the boundary behavior of weak (p; q)-quasiconformal mappings. J Math Sci 270, 420–427 (2023). https://doi.org/10.1007/s10958-023-06355-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06355-8

Keywords

Navigation