Skip to main content
Log in

Quasiconformal maps with controlled Laplacian

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We establish that every K-quasiconformal mapping w of the unit disk \(\mathbb{D}\) onto a C2-Jordan domain Ω is Lipschitz provided that ΔwLp(\(\mathbb{D}\)) for some p > 2. We also prove that if in this situation K → 1 with ||Δw||Lp(\(\mathbb{D}\)) → 0, and Ω→\(\mathbb{D}\) in C1,α-sense with α > 1/2, then the bound for the Lipschitz constant tends to 1. In addition, we provide a quasiconformal analogue of the Smirnov theorem on absolute continuity over the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure and Appl. Math. 12, (1959) 623–727.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Ahlfors, Lectures on Quasiconformal mappings, D. Van Nostrand, Inc. Princeton, 1966.

    MATH  Google Scholar 

  3. A. B. Aleksandrov, J. M. Anderson, and A Nicolau, Inner functions, Bloch spaces and symmetric measures, Proc. London Math. Soc. 79 (1999), 318–352.

    Article  MATH  Google Scholar 

  4. K. Astala, T. Iwaniec, and G. J. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton University Press, Princeton, 2009.

    MATH  Google Scholar 

  5. K. Astala and V. Manojlović, On Pavlović theorem in space, Potential Analysis 43 (2015), 361–370.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Astala, T. Iwaniec, I. Prause, and E. Saksman, Bilipschitz and quasiconformal rotation, stretching and multifractal spectra, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 113–154.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. A. Fefferman, C. E. Kenig and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. 134 (1991), 65–124.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, BerlinHeidelbergNew YorkTokyo, 1983.

    Book  MATH  Google Scholar 

  9. G. L. Goluzin, Geometric Theory of Functions of a Complex Variable, American Mathematical Society, Providence, RI, 1969.

    Book  MATH  Google Scholar 

  10. J. P. Kahane, Trois notes sur les ensembles parfait linearés, Enseign. Math. 15 (1969), 185–192.

    MATH  Google Scholar 

  11. D. Kalaj, Harmonic mappings and distance function, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), 669–681.

    MathSciNet  MATH  Google Scholar 

  12. D. Kalaj, On boundary correspondences under quasiconformal harmonic mappings between smooth Jordan domains, Math. Nachr. 285 (2012), 283–294.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Kalaj, A priori estimate of gradient of a solution to certain differential inequality and quasiregular mappings, J. Anal. Math. 119 (2013), 63–88.

    Google Scholar 

  14. D. Kalaj, M. Markovic, and M. Mateljević, Carathéodory and Smirnov type theorems for harmonic mappings of the unit disk onto surfaces, Ann. Acad. Sci. Fenn. Math. 38 (2013), 565–580.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Kalaj and M. Pavlović, On quasiconformal self-mappings of the unit disk satisfying the Poisson equation, Trans. Amer. Math. Soc. 363 (2011) 4043–4061.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin-Heidelberg, 1992.

    Book  MATH  Google Scholar 

  17. D. Partyka and K. Sakan, On bi-Lipschitz type inequalities for quasiconformal harmonic mappings, Ann. Acad. Sci. Fenn.Math. 32 (2007), 579–594.

    MathSciNet  MATH  Google Scholar 

  18. M. Pavlović, Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disc, Ann. Acad. Sci. Fenn. 27 (2002) 365–372.

    MATH  Google Scholar 

  19. G. Piranian, Two monotonic, singular, uniformly almost smooth functions, Duke Math. J. 33 (1966), 255–262.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Rudin, Real and Complex Analysis, Third edition. McGraw-Hill 1986.

    MATH  Google Scholar 

  21. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  22. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  23. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2. Auflage. Barth, Heidelberg, 1995.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kalaj.

Additional information

A part of this project was finished during the visit of the first author to Helsinki University in April 2014.

Supported by the Finnish CoE in Analysis and Dynamics Research, and by the Academy of Finland, projects 113826 and 118765.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaj, D., Saksman, E. Quasiconformal maps with controlled Laplacian. JAMA 137, 251–268 (2019). https://doi.org/10.1007/s11854-018-0072-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0072-5

Navigation