Skip to main content
Log in

Sobolev Extensions Via Reflections

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We show that certain extension results obtained by Maz’ya and Poborchi for domains with an outward peak can be realized via composition operators generated by reflections. We also study the case of the complementary domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton (1970).

    MATH  Google Scholar 

  2. V. G. Maz’ya and S. V. Poborchi, “On extension of functions in Sobolev classes to the exterior of a domain with the vertex of a peak on the boundary,” Sov. Math. Dokl. 29, 361–364 (1984).

    Google Scholar 

  3. V. G. Maz’ya and S. V. Poborchi, “Extension of functions of S. L. Sobolev classes in the exterior of a domain with a peak vertex on the boundary. I” [in Russian], Czech. Math. J. 36, 111, 634–661 (1986).

  4. V. G. Maz’ya and S. V. Poborchi, “Extension of functions of S. L. Sobolev classes in the exterior of a domain with a peak vertex on the boundary. II” [in Russian], Czech. Math. J. 37, No. 112, 128–150 (1987).

  5. V. G. Maz’ya and S. V. Poborchi, Differentiable Functions on Bad Domains, World Scientific, Singapore (1997).

  6. S. Poborchi, “Sobolev spaces for domains with cuspidals,” In: The Maz’ya anniversary collection, Vol. 1 pp. 175–185, Birkhäuser, Basel (1999).

  7. V. M. Gol’dshtein, T. G. Latfullin and S. K. Vodop’yanov, “Criteria for extension of functions of the class \( {L}_2^1 \) from unbounded plane domains,” Sib. Matj. J. 20, 298–301(1979).

    Article  Google Scholar 

  8. V. M. Gol’dshtein and S. K. Vodop’janov, “Prolongement des fonctions de classe \( {L}_p^1 \) et applications quasi conformes [in French]” C. R. Acad. Sci., Paris sér. A 290, 453–456 (1980).

    MathSciNet  Google Scholar 

  9. V. M. Gol’dshtein and V. N. Sitnikov, “On the continuation of functions of the class \( {W}_p^1 \) across Hölder boundaries” [in Russian], Tr. Semin. S. L. Soboleva, No. 1, 31–43 (1982).

  10. V. M. Gol’dshtein and A. D. Ukhlov, “About homeomorphisms that induce composition operators on Sobolev spaces,” Complex Var. Elliptic Equ. 55, No. 8-10, 833-845 (2010).

  11. V. M. Gol’dshtein and A. D. Ukhlov, “Sobolev homeomorphisms and composition operators,” In: Around the Research of Vladimir Maz’ya. I. Function Spaces. International Mathematical Series 11, pp. 207-220, Springer, New York (2010).

  12. S. Hencl and P. Koskela, “Mappings of finite distortion: Composition operator,” Ann. Acad. Sci. Fenn., Math. 33, No. 1, 65–80 (2008).

    MathSciNet  MATH  Google Scholar 

  13. A. D. Ukhlov, “On mappings generating embeddings of Sobolev spaces,” Sib. Math. J. 34, No. 1, 165–171 (1993).

    Article  MATH  Google Scholar 

  14. F. W. Gehring, “Lipschitz mappings and the p-capacity of rings in n-space,” In: Advances Theory Riemann Surfaces, Proc. 1969 Stony Brook Conf. pp. 175–193, Princeton Univ. Press, Princeton, NJ (1971).

  15. V. G. Maz’ya, “On weak solutions of the Dirichlet and Neumann problems,” Trans. Mosc. Math. Soc. 20, 135–172 (1971).

  16. S. Hencl and P. Koskela, “Regularity of the inverse of a planar Sobolev homeomorphism,” Arch. Ration. Mech. Anal. 180, No. 1, 75–95 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Hencl and P. Koskela, Lectures on Mappings of Finite Distortion, Springer, Charm (2014).

    Book  MATH  Google Scholar 

  18. S. K. Vodop’yanov, “Regularity of mappings inverse to Sobolev mappings,” Sb. Math. 203, No. 10, 1383–1410 (2012).

  19. P. W. Jones, “Quasiconformal mappings and extendability of Sobolev functions,” Acta Math. 147, 71–88 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Hajłasz, P. Koskela and H. Tuominen, “Sobolev embeddings, extensions and measure density condition,” J. Funct. Anal. 254, No. 5, 1217–1234 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. A. Adams and J. J. F. Fournier, Sobolev Space, Academic Press, New YOrk, NY (2003).

    MATH  Google Scholar 

  22. V. G. Maz’ya, Sobolev Spaces, Springer, Berlin (1985).

  23. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL (2015).

    Book  MATH  Google Scholar 

  24. S. K. Vodop’yanov, “Mappings on homogeneous groups and imbeddings of functional spaces,” Sib. Math. J. 30, No. 5, 685–698 (1989).

  25. S. K. Vodop’yanov and V. M. Gol’dshtein, “Lattice isomorphisms of the spaces \( {W}_n^1 \) and quasiconformal mappings,” Sib. Math. J. 16, 174–189 (1975).

  26. D. A. Herron and P. Koskela, “Uniform, Sobolev extension and quasiconformal circle domains,” J. Anal. Math. 57, 172–202 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Buckley and P. Koskela, Sobolev–Poincaré implies John, Math. Res. Lett. 2, No. 5, 577–593 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Smith and D. A. Stegenga, “Hölder domains and Poincaré domains,” Trans. Am. Math. Soc. 319, No. 1, 67–100 (1990).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Koskela.

Additional information

Translated from Problemy Matematicheskogo Analiza 118, 2022, pp. 117-137.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koskela, P., Zhu, Z. Sobolev Extensions Via Reflections. J Math Sci 268, 376–401 (2022). https://doi.org/10.1007/s10958-022-06204-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06204-0

Navigation