Skip to main content
Log in

FROM DYSON–SCHWINGER EQUATIONS TO QUANTUM ENTANGLEMENT

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We apply combinatorial Dyson–Schwinger equations and their Feynman graphon representations to study quantum entanglement in a gauge field theory \({\varPhi }\) in terms of cut-distance regions of Feynman diagrams in the topological renormalization Hopf algebra \(H^{\text {cut}}_{\text {FG}}({\varPhi })\) and lattices of intermediate structures. Feynman diagrams in \(H_{\text {FG}}({\varPhi })\) are applied to describe states in \({\varPhi }\) where we build the Fisher information metric on finite dimensional linear subspaces of states in terms of homomorphism densities of Feynman graphons which are continuous functionals on the topological space \(\mathcal {S}^{{\varPhi },M \subseteq [0,\infty )}_{\text {graphon}}([0,1])\). We associate Hopf subalgebras of \(H_{\text {FG}}({\varPhi })\) generated by quantum motions to separated regions of space-time to address some new correlations. These correlations are encoded by assigning a statistical manifold to the space of 1PI Green’s functions of \({\varPhi }\). These correlations are applied to build lattices of Hopf subalgebras, Lie subgroups, and Tannakian subcategories, derived from towers of combinatorial Dyson–Schwinger equations, which contribute to separated but correlated cut-distance topological regions. This lattice setting is applied to formulate a new tower of renormalization groups which encodes quantum entanglement of space-time separated particles under different energy scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Shojaei-Fard, Non-perturbative graph languages, halting problem and complexity, Forum Mathematicum, Vol. 34, Issue 5, 1159–1185, 2022. https://doi.org/10.1515/forum-2021-0119

  2. A. Shojaei-Fard, Halting problem in Feynman graphon processes derived from the renormalization Hopf algebra, Bull. Transilv. Univ. Braşov Ser. III. Math. Comput. Sci. 2(64), no. 1, 139–158, 2022. https://doi.org/10.31926/but.mif.2022.2.64.1.10

  3. A. Shojaei-Fard, The complexities of nonperturbative computations, Russ. J. Math. Phys., Vol. 28, No. 3, 358–376, 2021. https://doi.org/10.1134/S1061920821030092

  4. A. Shojaei-Fard, The dynamics of non-perturbative phases via Banach bundles, Nuclear Physics B, 969(2021) 115478, 39 pages. https://doi.org/10.1016/j.nuclphysb.2021.115478

  5. A. Shojaei-Fard, The analytic evolution of Dyson–Schwinger equations via homomorphism densities, Math Phys Anal and Geom, Vol. 24, No. 2, Article number 18 (28 pages), 2021. https://doi.org/10.1007/s11040-021-09389-z

  6. A. Shojaei-Fard, Formal aspects of non-perturbative Quantum Field Theory via an operator theoretic setting, Intern. J. Geom. Methods Mod. Phys., Vol. 16, No. 12, 1950192 (23 pages), 2019. https://doi.org/10.1142/S0219887819501925

  7. A. Shojaei-Fard, Non-perturbative\(\beta\)-functions via Feynman graphons, Modern Phys. Lett. A, Vol. 34, No. 14, 1950109 (10 pages), 2019. https://doi.org/10.1142/S0217732319501098

  8. A. Shojaei-Fard, A measure theoretic perspective on the space of Feynman diagrams, Bol. Soc. Mat. Mex. (3) 24, no. 2, 507–533, 2018. https://doi.org/10.1007/s40590-017-0166-6

  9. A. Shojaei-Fard, Graphons and renormalization of large Feynman diagrams, Opuscula Math. 38, no. 3, 427–455, 2018. https://doi.org/10.7494/OpMath.2018.38.3.427

  10. A. Khrennikov, Entanglement’s dynamics from classical stochastic process, Europhysics letters, 88(4), Article ID: 40005, 2009. https://doi.org/10.1209/0295-5075/88/40005

  11. A. Khrennikov, T. Bourama (Ed.), Quantum Foundations, Probability and Information, Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-74971-6

  12. A. Khrennikov, K. Svozil (Eds.), Quantum Probability and Randomness, Entropy, 2019. https://doi.org/10.3390/books978-3-03897-715-5

  13. L. Pezze, A. Smerzi, Entanglement, nonlinear dynamics, and the Heisenberg limit, Phys. Rev. Lett., 102(10), 100401, 2009. https://doi.org/10.1103/PhysRevLett.102.100401

  14. A. Connes, M. Marcolli, Noncommutative geometry, quantum fields and motives, Colloquium Publications, Amer. Math. Soc., Vol. 55, 2008. https://bookstore.ams.org/coll-55

  15. V.P. Nair, Quantum Field Theory: a modern perspective, Graduate Texts in Contemporary Physics, Springer, 2005. https://doi.org/10.1007/b106781

  16. F. Strocchi, An introduction to non-perturbative foundations of Quantum Field Theory, International Series of Monographs on Physics, Oxford University Press, 2013. https://doi.org/10.1093/acprof:oso/9780199671571.001.0001

  17. M. Blasone, F. DellAnno, S. De Siena, F. Illuminati, Entanglement in Quantum Field Theory: particle mixing and oscillations, J. Phys.: Conf. Ser. (442) 012070, 2013. https://doi.org/10.1088/1742-6596/442/1/012070

  18. M. Blasone, F. DellAnno, S. De Siena, F. Illuminati, A field-theoretical approach to entanglement in neutrino mixing and oscillations, EPL (106) 30002, 2014. https://doi.org/10.1209/0295-5075/106/30002

  19. P. Calabrese, J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech., P06002, 2004. https://doi.org/10.1088/1742-5468/2004/06/P06002

  20. H. Casini, M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B, 600, Issue 1–2, 142–150, 2004. https://doi.org/10.1016/j.physletb.2004.08.072

  21. Y. Shi, Entanglement in relativistic Quanum Field Theory, Phys. Rev. D. art. no. 105001, 2004. https://doi.org/10.1103/PhysRevD.70.105001

  22. C. Gallaro, R. Chatterjee, A modular operator approach to entanglement of causally closed regions, Int J Theor Phys 61, 221(2022). https://doi.org/10.1007/s10773-022-05211-w

  23. H. Reeh, S. Schlieder, Bemerkungen zur unitaraquivalenz von lorentzinvarianten feldern, Nuovo Cim 22, 1051–1068, 1961. https://doi.org/10.1007/BF02787889

  24. R.F. Streater, A.S. Wightman, PCT, Spin and Statistics, and All That, Princeton: Princeton University Press, 2016. https://doi.org/10.1515/9781400884230

  25. E. Witten, APS medal for exceptional achievement in research: invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90(4), 045003, 2018. https://doi.org/10.1103/RevModPhys.90.045003

  26. D.J. Broadhurst, D. Kreimer, Renormalization automated by Hopf algebra, J. Symb. Comput. 27, no. 6, 581–600, 1999. https://doi.org/10.1006/jsco.1999.0283

  27. D. Kreimer, Algebraic structures in local QFT, Nucl. Phys. Proc. Suppl., Vol. 205–206, 122–128, 2010. https://doi.org/10.1016/j.nuclphysbps.2010.08.030

  28. D. Kreimer, New mathematical structures in renormalizable quantum field theories, Annals Phys. 303, 179–202, 2003. https://doi.org/10.1016/S0003-4916(02)00023-4

  29. C. Brouder, Quantum field theory meets Hopf algebra, Mathematische Nachrichten, Vol. 282, no. 12, 1664–1690, 2009. https://doi.org/10.1002/mana.200610828

  30. D. Kreimer, Structures in Feynman graphs: Hopf algebras and symmetries, In Graphs and patterns in mathematics and theoretical physics, Sympos. Pure Math. 73, 43–78, 2005. https://doi.org/10.1090/pspum/073/2131011

  31. W.D. van Suijlekom, Renormalization of gauge fields: A Hopf algebra approach, Commun. Math. Phys., 276:773–798, 2007. https://doi.org/10.1007/s00220-007-0353-9

  32. C. Borgs, J.T. Chayes, H. Cohn, N. Holden, Sparse exchangeable graphs and their limits via graphon processes, J. Mach. Learn. Res. 18, Paper No. 210, 71 pp, 2017. https://www.jmlr.org/papers/v18/16-421.html

  33. B. Bollobas, O. Riordan, Metrics for sparse graphs, in S. Huczynska, J. D. Mitchell, and C. M. Roney-Dougal, eds., Surveys in combinatorics 2009, pages 211–287, London Math. Soc. Lecture Note Ser. 365, Cambridge University Press, Cambridge, 2009. https://doi.org/10.1017/CBO9781107325975.009

  34. S. Weinzierl, Hopf algebras and Dyson–Schwinger equations, Front. Phys. 11, no.3, 111206, 2016. https://doi.org/10.1007/s11467-016-0562-9

  35. L. Foissy, Faa di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson–Schwinger equations, Adv. Math. 218(1), 136–162, 2008. https://doi.org/10.1016/j.aim.2007.12.003

  36. D. Kreimer, Anatomy of a gauge theory, Annals Phys. 321, 2757–2781, 2006. https://doi.org/10.1016/j.aop.2006.01.004

  37. S. Janson, Graphons, cut norm and distance, couplings and rearrangements, NYJM Monographs, Volume 4, 2013. https://nyjm.albany.edu/m/2013/4v.pdf

  38. N.S. Yanofsky, Towards a definition of an algorithm, J. Logic Comput. 21(2), 253–286, 2010. https://doi.org/10.1093/logcom/exq016

  39. N.S. Yanofsky, Galois theory of algorithms, In: Baskent, C., Moss, L., Ramanujam, R. (eds) Rohit Parikh on Logic, Language and Society. Outstanding Contributions to Logic, Vol. 11, 323–347, 2017. https://doi.org/10.1007/978-3-319-47843-2_17

  40. Y.I. Manin, Renormalization and computation I: Motivation and background, OPERADS 2009, Semin. Congr., Vol. 26, 181–222, Societe Mathematique, France, Paris, 2013. https://doi.org/10.48550/arXiv.0904.4921

  41. Y.I. Manin, Renormalization and computation II: time cutoff and the halting problem, Math. Struct. Comput. Sci. 22(05), 729–751, 2012. https://doi.org/10.1017/S0960129511000508

  42. A. Shojaei-Fard, A new perspective on intermediate algorithms via the Riemann–Hilbert correspondence, Quantum Stud.: Math. Found., Vol. 4, Issue 2, 127–148, 2017. https://doi.org/10.1007/s40509-016-0088-4

Download references

Acknowledgements

The author would like to thank the reviewer for the important suggestions and comments which were helpful to clarify the results of this work.

Funding

Research grants from Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany as a Postdoctoral Researcher and Institut des Hautes Etudes Scientifiques, 91440 Bures-Sur-Yvette, France as an Invited Researcher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shojaei-Fard.

Ethics declarations

Research involving human participants and/or animals

This research has no involving human participants and/or animals.

Informed consent

Informed consent is not applicable.

Conflict of interest

The author is grateful to Max Planck Institute for Mathematics and Institut des Hautes Etudes Scientifiques for the support and hospitality during the initial study and research progress on this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei-Fard, A. FROM DYSON–SCHWINGER EQUATIONS TO QUANTUM ENTANGLEMENT. J Math Sci 266, 892–916 (2022). https://doi.org/10.1007/s10958-022-06171-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06171-6

Keywords

Mathematics Subject Classification (2000)

Navigation