Introduction

In this paper, we study the boundedness from one general local Morrey-type space to another one of the generalized Riesz potential

$$\begin{aligned} \left( I_{\rho (\cdot )}f\right) (x) = \int _{\mathbb {R}^{n}}^{}\rho (\vert x-y\vert )f(y) dy,\ x\in \mathbb {R}^{n}, \end{aligned}$$

under certain assumptions on the kernel \(\rho\). Our aim is to generalize the results obtained in [6] for the case of the classical Riesz potential \(I_{\alpha },\) in which \(\rho (t)=t^{\alpha -n}\), \(t>0\), \(0<\alpha <n\). Some of the presented results were stated without proofs in [7]. Let \(F,G : A\times B \longrightarrow [0,\infty ] .\) Throughout this paper we say that F is dominated by G uniformly in \(x\in A\) and write

$$\begin{aligned} F \lesssim G\ \text {uniformly\ in}\ x \in A \end{aligned}$$

if there exists \(c(B)>0\) such that

$$\begin{aligned} F(x,y)\le c(B) G(x,y) \ \text {for all} \ x \in A. \end{aligned}$$

(So c(B) is independent of \(x \in A,\) but may depend on \(y \in B\).) Respectively, we say that F dominates G uniformly in \(x\in A\) and write

$$\begin{aligned} F \gtrsim G\ \text {uniformly\ in}\ x \in A \end{aligned}$$

if there exists \(c(B)>0\) such that

$$\begin{aligned} F(x,y)\ge c(B)G(x,y) \ \text {for all} \ x \in A. \end{aligned}$$

We also say that F is equivalent to G uniformly in \(x\in A\) and write

$$\begin{aligned} F \thickapprox G\ \text {uniformly\ in}\ x \in A \end{aligned}$$

if F and G dominate each other uniformly in \(x\in A.\)

Definitions and basic properties of general Morrey-type spaces

In this section we recall basic facts of the theory of general Morrey-type spaces.

Let, for a Lebesgue measurable set \(\Omega \subset \mathbb {R}^{n},\) \(\mathfrak {M}(\Omega )\) denote the space of all functions \(f: \Omega \longrightarrow \mathbb {C}\) Lebesgue measurable on \(\Omega ,\) and \(\mathfrak {M^{+}}(\Omega )\) denote the subset of \(\mathfrak {M}(\Omega )\) of all non-negative functions.

Definition 2.1

Let \(0<p,\theta \le \infty\) and let \(w \in \mathfrak {M^{+}}\big ((0,\infty )\big )\) be not equivalent to 0. We denote by \(LM_{p\theta ,w (\cdot )}\) the local Morrey-type space, the space of all functions \(f\in L_{p}^{ \text {loc}}(\mathbb {R}^{n})\) with finite quasinorm

$$\begin{aligned} \Vert f\Vert _{LM_{p\theta ,w (\cdot )}}\equiv \Vert f\Vert _{LM_{p\theta ,w (\cdot )}(\mathbb {R}^{n})}=\Vert w(r)\Vert f\Vert _{L_{p}(B(0,r))} \Vert _{L_{\theta }(0,\infty )}. \end{aligned}$$

Definition 2.2

Let \(0<p,\theta \le \infty\). We denote by \(\Omega _{\theta }\) the set of all functions \(w \in \mathfrak {M^{+}}((0,\infty ))\) which are not equivalent to 0 and such that

$$\begin{aligned} \Vert w\Vert _{L_{\theta }(t,\infty )}<\infty \end{aligned}$$
(2.1)

for some \(t>0\) .

Lemma 2.1

[3,4,5]. Let \(0<p\), \(\theta \le \infty\) and let w be a non-negative Lebesgue measurable function on \((0, \infty )\), which is not equivalent to 0.

Then the space \(LM_{p\theta , w(\cdot )}\) is nontrivial if and only if \(w \in \Omega _{\theta }\).

In the sequel, keeping in mind Lemma 2.1, we always assume that \(w \in \Omega _{\theta }\) for the local Morrey-type spaces \(LM_{p\theta ,w(\cdot )}\).

It is well known that the spaces \(LM_{p \theta , w(\cdot )}\) are Banach spaces if \(1\le p\), \(\theta \le \infty\) and are quasi-Banach spaces if \(0< p <1\), or \(0<\theta < 1\), or both \(0<p\), \(\theta <1\).

For further properties of general Morrey-type spaces, operators acting in such spaces and applications see, for example, survey papers [1, 2, 12,13,14,15,16] and references therein.

\(L_{p}\) and \(WL_{p}\) estimates of generalized Riesz potentials over balls

Let \(n \in \mathbb {N}, 0<p< \infty , \Omega \subset \mathbb {R}^{n}\) be a Lebesgue measurable set. Recall that the weak \(L_{p}\)-space \(WL_{p}(\Omega )\) is the space of all Lebesgue measurable functions \(f: \Omega \rightarrow \mathbb {C}\) for which

$$\begin{aligned} \Vert f \Vert _{ WL_{p}(\Omega )} = \sup \limits _{ t\ge 0} t \left| \left\{ y \in \Omega : \vert f(y)\vert > t \right\} \right| ^{\frac{1}{p}} < \infty . \end{aligned}$$

Here \(\vert G \vert\) denotes the Lebesgue measure of a set \(G \subset \mathbb {R}^{n}.\)

Remark 3.1

Let \(M > 0.\) It follows directly from the above definition that, if f is equivalent to M on \(\Omega\), then

$$\begin{aligned} \Vert M \Vert _{ WL_{p}(\Omega )} = \Vert M \Vert _{L_{p}(\Omega )} = M\vert \Omega \vert ^{\frac{1}{p}} \end{aligned}$$

and if \(f : \Omega \rightarrow \mathbb {R}\) is such that \(f \geqslant M\) almost everywhere on \(\Omega\), then

$$\begin{aligned} \Vert f \Vert _{WL_{p}(\Omega )} \ge M \vert \Omega \vert ^{\frac{1}{p}}. \end{aligned}$$

Definition 3.1

Let \(n \in \mathbb {N}.\) We say that \(\rho \in S_{n}\) if \(\rho \in \mathfrak {M^{+}}((0,\infty ))\) and

1) \({\int _{0}^{r}}\rho (t)t^{n-1}dt < \infty\) for all \(r > 0,\)

2) for some \(c_{1}, c_{2}> 0\),

$$\begin{aligned} c_{1}\rho (t)\le \rho (s)\le c_{2}\rho (t) \end{aligned}$$

for all \(s,t>0\) satisfying the inequality \(\frac{t}{2}\le s\le 2t.\)

Remark 3.2

Let \(x \in \mathbb {R}^{n}\), \(r>0\), \(y \in B(x,r)\), \(z \in\) \(^{c}B(x,2r).\) Then

$$\begin{aligned} \vert y-z \vert \le \vert y-x \vert + \vert x-z \vert \le r + \vert x-z \vert \le \frac{1}{2} \vert x-z \vert + \vert x-z \vert <2 \vert x-z \vert \end{aligned}$$

and

$$\begin{aligned} \vert y-z \vert \ge \vert x-z \vert - \vert y-x \vert \ge \vert x-z \vert -r \ge \vert x-z \vert - \frac{1}{2} \vert x-z \vert = \frac{1}{2} \vert x-z \vert . \end{aligned}$$

Let \(s= \vert y-z\vert\) and \(t= \vert x-z\vert .\) Then by Condition 2) of Definition 3.1 we have

\(\text {3)} \ \ c_{1}\rho (\vert x-z \vert )\le \rho (\vert y-z \vert )\le c_{2}\rho (\vert x-z \vert )\)

for all \(x \in \mathbb {R}^{n}\), \(r>0\), \(y \in B(x,r)\), \(z \in\) \(^{c}B(x,2r).\)

Remark 3.3

If functions \(\rho _{1},\rho _{2} : (0,\infty )\rightarrow (0,\infty )\) satisfy Condition 2) of Definition 3.1 with \(c_{11}\), \(c_{12}>0\), \(c_{21}\), \(c_{22}>0\), respectively, then the product \(\rho _{1}\rho _{2}\) satisfies Condition 2) with \(c_{1}=c_{11} c_{21}\) and \(c_{2}=c_{12} c_{22}\). Indeed, it suffices to multiply the inequalities

$$\begin{aligned} c_{i1}\ \rho _{i}(t)\le \rho _{i} (s)\le c_{i2} \rho _{i}(t), \end{aligned}$$

where \(s, t>0\), \(\frac{t}{2}\le s \le 2t\) and \(i=1,2\).

Remark 3.4

If a function \(\rho _{1} : (0,1]\rightarrow (0,\infty )\) satisfies Condition 2) of Definition 3.1 with \(c_{11}\), \(c_{12}>0\) and a function \(\rho _{2} : (1,\infty ) \rightarrow (0,\infty )\) satisfies Condition 2) of Definition 3.1 with \(c_{21}\), \(c_{22}>0\), then the function

$$\begin{aligned} \rho (t) = \left\{ \begin{array}{ll} \rho _{1}(t),\ 0<t\le 1, \\ \rho _{2}(t),\ 1<t< \infty \end{array}\right. \end{aligned}$$

satisfies Condition 2) of Definition 3.1 with certain \(c_{1}, c_{2}>0\).

Indeed, let \(s,t>0\), \(\frac{t}{2}\le s\le 2t\). If \(t\le \frac{1}{2}\), then \(s\le 1\), \(\rho (s)=\rho _{1}(s)\), \(\rho (t)=\rho _{1}(t)\) and Condition 2) of Definition 3.1 is satisfied with \(c_{11}, c_{12}>0\). Respectively, if \(t>2\), then \(s>1\), \(\rho (s)=\rho _{2}(s)\), \(\rho (t)=\rho _{2}(t)\) and Condition 2) of Definition 3.1 is satisfied with \(c_{21}, c_{22}>0\). Let \(\frac{1}{2}<t\le 2\), then \(\frac{1}{4}<s\le 4\),

$$\begin{aligned} \min \{c_{11},c_{21}\} \le \left\{ \begin{array}{ll} c_{11},\ \frac{1}{4}<s\le 1, \\ c_{21},\ 1<s<4 \end{array}\right. \le \rho (s)\le \left\{ \begin{array}{ll} c_{12},\ \frac{1}{4}<s\le 1, \\ c_{22},\ 1<s<4 \end{array}\right. \le \max \{c_{12},c_{22}\} , \end{aligned}$$
$$\begin{aligned} \min \{c_{11},c_{21}\} \le \left\{ \begin{array}{ll} c_{11},\ \frac{1}{2}<t\le 1, \\ c_{21},\ 1<t\le 2 \end{array}\right. \le \rho (t)\le \left\{ \begin{array}{ll} c_{12},\ \frac{1}{2}<t\le 1, \\ c_{22},\ 1<t\le 2 \end{array}\right. \le \max \{c_{12},c_{22}\} , \end{aligned}$$

hence

$$\begin{aligned} \min \{c_{11},c_{21}\} (\max \{c_{12},c_{22}\})^{-1}\rho (t)\le \rho (s)\le \max \{c_{12},c_{22}\} (\min \{c_{11},c_{21}\})^{-1}\rho (t). \end{aligned}$$

So, for \(\frac{1}{2}<t\le 2\), \(\frac{t}{2}\le s\le 2t\), Condition 2) of Definition 3.1 is satisfied with

$$\begin{aligned} c_{1}=\min \{c_{11},c_{21}\}\max \{c_{12},c_{22}\}^{-1}, \ c_{2}= \max \{c_{12},c_{22}\} \min \{c_{11},c_{21}\}^{-1}. \end{aligned}$$

The above inequality is satisfied for all \(s,t>0\), \(\frac{t}{2}\le s\le 2t\), because \(c_{11}\le 1\le c_{12}\), \(c_{21}\le 1\le c_{22}\), hence \(c_{1} \le c_{11}\), \(c_{1} \le c_{21}\), \(c_{12} \le c_{2}\), \(c_{22} \le c_{2}\).

Remark 3.5

If a function \(\rho : (0,\infty ) \rightarrow (0,\infty )\) satisfies Condition 2) of Definition 3.1, then for any \(\gamma >0\) \(c_{1\gamma }, c_{2\gamma } >0\) such that for any \(t>0\)

$$\begin{aligned} c_{1\gamma }\rho (t)\le \rho (\gamma t) \le c_{2\gamma } \rho (t). \end{aligned}$$

Indeed, if \(\frac{1}{2}\le \gamma \le 2\), then this inequality follows by Condition 2) with \(s=\gamma t\). Let \(2 \le \gamma < 4\), then by Condition 2) with \(t=2\tau\), \(\tau >0\) and \(s=\gamma \tau\) and the above inequality with \(t=\tau\) and \(\gamma =2\)

$$\begin{aligned} {c_{1}^{2}}\rho (\tau ) \le c_{1}\rho (2\tau ) \le \rho (\gamma \tau ) \le c_{2}\rho (2\tau ) \le {c_{2}^{2}}\rho (\tau ),\ \tau >0, \end{aligned}$$

because \(\frac{1}{2} (2\tau ) \le \gamma \tau \le 2 (2\tau )\).

Next, let \(4 \le \gamma < 8\) by Condition 2) with \(t = 4\tau , \tau >0, s= \gamma \tau ,\)

$$\begin{aligned} \frac{1}{2} (4\tau ) \le \gamma \tau \le 2(4\tau ), \end{aligned}$$

then

$$\begin{aligned} {c^{3}_{1}}\rho (\tau ) \le {c^{2}_{1}}\rho (2\tau ) \le c_{1}\rho (4\tau )\le \rho (\gamma \tau )\le c_{2}\rho (4\tau ) \le {c^{2}_{2}}\rho (2\tau )\le {c^{3}_{2}}\rho (\tau ), \ \tau >0. \end{aligned}$$

Furthermore, if \(2^{k-1}\le \gamma <2^{k}\), \(k\in \mathbb {N}\), \(k>3 \Leftrightarrow k=\left[ \frac{\ln \gamma }{\ln 2}\right] +1\), then

$$\begin{aligned} {c^{k}_{1}}\rho (\tau )\le c^{k-1}_{1}\rho (2\tau )\le ...\le \rho (\gamma \tau )\le {c^{2}_{2}}\rho (2\tau )\le ...\le {c^{k}_{2}}\rho (\tau ). \end{aligned}$$

The argument for the case \(0<\gamma <\frac{1}{2}\) is similar.

Example 1

Let \(\rho (t)=t^{\alpha -n}, t>0, 0<\alpha < n.\) Then \(\rho \in S_{n}\) because

$$\begin{aligned} {\int _{0}^{r}} t^{\alpha -n+n-1}dt< \infty \ \text { for all}\ \ 0<r<\infty \ \Leftrightarrow \alpha > 0 \end{aligned}$$

and, for any \(s,t >0\) for which \(\frac{t}{2} \le s\le 2t\),

$$\begin{aligned} 2^{\alpha -n}\rho (s)= 2^{\alpha -n}s^{\alpha -n}= (2s)^{\alpha -n} \end{aligned}$$
$$\begin{aligned} \le \rho (t)= t^{\alpha -n}\le \left( \frac{s}{2}\right) ^{\alpha -n}= 2^{n-\alpha }s^{\alpha -n}= 2^{n-\alpha }\rho (s). \end{aligned}$$

Example 2

Let \(0<\alpha <n\), \(-\infty<\beta _{1},\beta _{2}<\infty\),

$$\begin{aligned} \Psi _{\beta _{1},\beta _{2}}(t) = \left\{ \begin{array}{ll} (1+\vert \ln t\vert )^{\beta _{1}},\ 0<t\le 1, \\ (1+\vert \ln t\vert )^{\beta _{2}},\ 1<t< \infty \end{array}\right. \end{aligned}$$

and \(\rho (t) =t^{\alpha -n}\Psi _{\beta _{1}\beta _{2}}(t)\), \(t>0\). Then \(\rho \in S_{n}\).

Since the function \(\rho\) is continuous on \((0,\infty )\) it suffices to prove Condition 1) of Definition 3.1 for \(r=1.\) Recall that for any \(\varepsilon >0\) there exists \(C_{\varepsilon }\ge 1\) such that

$$\begin{aligned} 1+\vert \ln t\vert \le C_{\varepsilon }t^{-\varepsilon } \end{aligned}$$

for all \(t \in (0,1].\) If \(\beta _{1}\le 0,\) then

$$\begin{aligned} {\int _{0}^{1}}\rho (t)t^{n-1}dt = {\int _{0}^{1}}t^{\alpha -1}(1+\vert \ln t\vert )^{\beta _{1}}dt \le {\int _{0}^{1}} t^{\alpha -1}dt <\infty . \end{aligned}$$

If \(\beta _{1}>0,\) then

$$\begin{aligned} {\int _{0}^{1}}\rho (t)t^{n-1}dt = {\int _{0}^{1}}t^{\alpha -1}(1+\vert \ln t\vert )^{\beta _{1}}dt \le C_{\varepsilon }^{\beta _{1}} {\int _{0}^{1}} t^{\alpha -\varepsilon \beta _{1}-1}dt <\infty \end{aligned}$$

if we choose \(\varepsilon >0\) to be such that \(\varepsilon \beta _{1}<\alpha .\)

As for Condition 2) of Definition 3.1, by Remark 3.3 and Example 1, it suffices to prove that the function \(\varphi _{\beta _{1},\beta _{2}}\) satisfies this condition.

Let \(s,t>0\) and \(\frac{t}{2}\le s\le 2t.\) If \(s>1,\) hence \(t>\frac{1}{2},\) then

$$\begin{aligned} 1+\vert \ln s\vert \le 1+\ln 2t = 1+\ln 2+\ln t\le 2(1+\vert \ln t\vert ) \end{aligned}$$

and

$$\begin{aligned} 1+\vert \ln t\vert \le 1+\ln 2 <2(1+\vert \ln s\vert ), \end{aligned}$$

hence

$$\begin{aligned} \frac{1}{2}(1+\vert \ln t\vert )\le 1+\vert \ln s\vert \le 2 (1+\vert \ln t\vert ). \end{aligned}$$

For similar reasons this inequality also holds if \(s\le 1,\) hence \(t\le 2.\) Therefore, for \(s\le 1\)

$$\begin{aligned} 2^{-\vert \beta _{1}\vert }(1+\vert \ln t\vert )^{\beta _{1}}\le (1+\vert \ln s\vert )^{\beta _{1}}\le 2^{\vert \beta _{1}\vert }(1+\vert \ln t\vert )^{\beta _{1}}. \end{aligned}$$

If \(t \le 1,\) this means that

$$\begin{aligned} 2^{-\vert \beta _{1}\vert }\Psi _{\beta _{1},\beta _{2}}(t)\le \Psi _{\beta _{1},\beta _{2}}(s)\le 2^{\vert \beta _{1}\vert } \Psi _{\beta _{1},\beta _{2}}(t). \end{aligned}$$

If \(1<t\le 2,\) then

$$\begin{aligned} 2^{-\vert \beta _{1}\vert - \vert \beta _{2}\vert }\le (1+\vert \ln t\vert )^{\beta _{1}} (1+\vert \ln t\vert )^{-\beta _{2}}\le 2^{\vert \beta _{1}\vert +\vert \beta _{2}\vert }, \end{aligned}$$

hence

$$\begin{aligned} 2^{-2\vert \beta _{1}\vert -\vert \beta _{2}\vert }(1+\vert \ln t\vert )^{\beta _{2}}\le (1+\vert \ln s\vert )^{\beta _{1}}\le 2^{2\vert \beta _{1}\vert +\vert \beta _{2}\vert }(1+\vert \ln t\vert )^{\beta _{2}} \end{aligned}$$

which means that

$$\begin{aligned} 2^{-2\vert \beta _{1}\vert -\vert \beta _{2}\vert }\Psi _{\beta _{1},\beta _{2}}(t)\le \Psi _{\beta _{1},\beta _{2}}(s)\le 2^{2\vert \beta _{1}\vert +\vert \beta _{2}\vert }\Psi _{\beta _{1},\beta _{2}}(t). \end{aligned}$$

So, this inequality holds for all \(s\le 1\) and all t satisfying the inequality \(\frac{t}{2} \le s\le 2t.\)

For similar reasons, for all \(s>1\) and all t satisfying the inequality \(\frac{t}{2} \le s\le 2t\)

$$\begin{aligned} 2^{-\vert \beta _{1}\vert -2\vert \beta _{2}\vert }\Psi _{\beta _{1},\beta _{2}}(t)\le \Psi _{\beta _{1},\beta _{2}}(s)\le 2^{\vert \beta _{1}\vert +2\vert \beta _{2}\vert }\Psi _{\beta _{1},\beta _{2}}(t). \end{aligned}$$

Example 3

Let \(0<\alpha <n\), \(-\infty<\beta <\infty\) and

$$\begin{aligned} \rho (t) = \left\{ \begin{array}{ll} t^{\alpha -n} ,\ 0<t\le 1, \\ t^{\beta },\ 1<t< \infty . \end{array}\right. \end{aligned}$$

Then \(\rho \in S_{n}\). Indeed, Condition 1) is clearly satisfied. As for Condition 2), it is also satisfied by Remark 3.4, because \(\rho _{1}(t)=t^{\alpha -n}\) satisfies Condition 2) on (0, 1] by Example 1 and \(\rho _{2}(t) =t^{\beta }\) satisfies Condition 2) on \((1,\infty )\) by an argument similar to that of the proof of Example 1.

Note that \(t^{\beta }\) can be replaced by any function \(\rho (t)\) satisfying Condition 2) on \((1,\infty )\).

Definition 3.2

For \(\rho \in S_{n}\) and \(f \in \mathfrak {M}(\mathbb {R}^{n})\)

$$\begin{aligned} I_{\rho (\cdot )}f(x) = \int _{\mathbb {R}^{n}}^{}\rho (\vert x-y\vert )f(y) dy, \end{aligned}$$
$$\begin{aligned} \overline{ I}_{\rho (\cdot ),r}f(x)= \int _{^{c}B(x,r) }^{}\rho (\vert x-y\vert )f(y) dy \end{aligned}$$

and

$$\begin{aligned} \underline{I}_{\rho (\cdot ),r}f(x)= \int _{B(x,r) }^{}\rho (\vert x-y\vert )f(y) dy. \end{aligned}$$

Lemma 3.1

Let \(n \in \mathbb {N},\rho \in S_{n},\) \(0 < p\le \infty , x \in \mathbb {R}^{n}, r>0, f \in \mathfrak {M}(\mathbb {R}^{n}).\) ThenFootnote 1\(G= r^{\frac{n}{p}} \left( \overline{I}_{\rho (\cdot ), 2r} \vert f \vert \right) (x).\)

$$\begin{aligned} \Vert I_{\rho (.)}\vert f\vert \Vert _{WL_{p}(B(x,r))}\gtrsim r^{\frac{n}{p}} \left( \overline{I}_{\rho (\cdot ), 2r} \vert f\vert \right) (x) \end{aligned}$$
(3.1)

uniformly in \(x \in \mathbb {R}^{n}\), \(r>0\) and \(f \in \mathfrak {M}(\mathbb {R}^{n}).\)

Proof

By Property 3) of Remark 3.2 for any \(y \in B(x,r)\)

$$\begin{aligned} I_{\rho (.)}\vert f\vert (y) \ge \int _{^{c}B(x,2r) }^{}\rho (\vert y-z\vert )\vert f(z)\vert dz \end{aligned}$$
$$\begin{aligned} \ge c1 \int _{^{c}B(x,2r) }^{}\rho (\vert x-z\vert )\vert f(z)\vert dz, \end{aligned}$$

hence, by Remark 3.1, we get

$$\begin{aligned} \Vert I_{\rho (\cdot )}|f| \Vert _{WL_{p}(B(x,r))}\ge c_{1} \left( v_{n}r^{n}\right) ^{\frac{1}{p}}\int _{^{c}B(x,2r) }^{}\rho (\vert x-z\vert )\vert f(z)\vert dz \end{aligned}$$
$$\begin{aligned} = c_{1} v_{n}^{\frac{1}{p}}r^{\frac{n}{p}} \overline{I}_{\rho (\cdot ), 2r} \vert f\vert (x) \end{aligned}$$

for all \(x \in \mathbb {R}^{n}, r>0\) and \(f \in \mathfrak {M}(\mathbb {R}^{n}).\) Here \(v_{n}\) is the volume of the unit ball in \(\mathbb {R}^{n}\).

Lemma 3.2

Let \(n \in \mathbb {N},\rho \in S_{n},\) \(0 < p\le \infty , x \in \mathbb {R}^{n}, r>0\), \(f \in \mathfrak {M}(\mathbb {R}^{n}).\) Then

$$\begin{aligned} \Vert I_{\rho (\cdot )}\vert f\vert \Vert _{L_{p}(B(x,r))}\thickapprox \Vert I_{\rho (\cdot )}(\vert f\vert \chi _{_{B(x,2r)}}) \Vert _{L_{p}(B(x,r))} + r^{\frac{n}{p}} \left( \overline{I}_{\rho (\cdot ), 2r} \vert f\vert \right) (x) \end{aligned}$$
(3.2)

and

$$\begin{aligned} \Vert I_{\rho (\cdot )}\vert f\vert \Vert _{WL_{p}(B(x,r))}\thickapprox \Vert I_{\rho (\cdot )}(\vert f\vert \chi _{_{B(x,2r)}}) \Vert _{WL_{p}(B(x,r))} + r^{\frac{n}{p}} \left( \overline{I}_{\rho (\cdot ), 2r} \vert f\vert \right) (x) \end{aligned}$$
(3.3)

uniformly in \(x \in \mathbb {R}^{n}, r>0\) and \(f \in \mathfrak {M}(\mathbb {R}^{n}).\)

Proof

According to the propertiesFootnote 2 of the spaces \(L_{p}(\Omega )\) and \(WL_{p}(\Omega )\)

$$\begin{aligned} \Vert I_{\rho (\cdot )}\vert f\vert \Vert _{L_{p}(B(x,r))} \le 2^{(\frac{1}{p}-1)_{+}}\left( \Vert I_{\rho (\cdot )}(\vert f\vert \chi _{_{B(x,2r)}}) \Vert _{L_{p}(B(x,r))} + \Vert I_{\rho (\cdot )}(\vert f\vert \chi _{_{^{c}B(x,2r)}}) \Vert _{L_{p}(B(x,r))}\right) , \end{aligned}$$
(3.4)
$$\begin{aligned} \Vert I_{\rho (\cdot )}\vert f\vert \Vert _{WL_{p}(B(x,r))} \le 2^{\frac{1}{p}} \Big ( \Vert I_{\rho (\cdot )}(\vert f\vert \chi _{_{B(x,2r)}}) \Vert _{WL_{p}(B(x,r))} + \Vert I_{\rho (\cdot )}(\vert f\vert \chi _{_{^{c}B(x,2r)}}) \Vert _{WL_{p}(B(x,r))}\Big ) . \end{aligned}$$
(3.5)
$$\begin{aligned} \Vert I_{\rho (\cdot )}\vert f\vert \Vert _{L_{p}(B(x,r))} \ge \frac{1}{2}\Big ( \Vert I_{\rho (\cdot )}(\vert f\vert \chi _{_{B(x,2r)}}) \Vert _{L_{p}(B(x,r))} + \Vert I_{\rho (\cdot )}(\vert f\vert \chi _{_{^{c}B(x,2r)}} ) \Vert _{L_{p}(B(x,r))}\Big ), \end{aligned}$$
(3.6)

and

$$\begin{aligned} \Vert I_{\rho (\cdot )}\vert f\vert \Vert _{L_{p}(B(x,r))} \Vert I_{\rho (\cdot )} \vert f\vert \Vert _{WL_{p}(B(x,r))} \ \ge \ \Vert I_{\rho (\cdot )}(\vert f\vert \chi _{_{B(x,2r)}} ) \Vert _{WL_{p}(B(x,r))}. \end{aligned}$$
(3.7)

Next,

$$\begin{aligned} \Vert I_{\rho (\cdot )}(\vert f\vert \chi _{_{^{c}B(x,2r)}} ) \Vert _{WL_{p}(B(x,r))} \ \le \ \Vert I_{\rho (\cdot )}(\vert f\vert \chi _{_{^{c}B(x,2r)}}) \Vert _{L_{p}(B(x,r))} \end{aligned}$$
$$\begin{aligned} = \left[ \int _{B(x,r)}^{} \left( \int _{^{c}B(x,2r)}^{}\rho (\vert y-z\vert )\vert f(z)\vert dz\right) ^{p} dy\right] ^{\frac{1}{p}} = J. \end{aligned}$$

By Condition 3) of Remark 3.2

$$\begin{aligned} J \le _{C2} \left[ \int _{B(x,r)}^{} \left( \int _{^{c}B(x,2r)}^{}\rho (\vert x-z\vert )\vert f(z)\vert dz\right) ^{p} dy\right] ^{\frac{1}{p}}=_{C2}v_{n}^{\frac{1}{p}}r^{\frac{n}{p}}\left( \overline{I}_{\rho (.), 2r} \vert f\vert \right) (x). \end{aligned}$$

Thus, by (3.4) and (3.5)

$$\begin{aligned} \Vert I_{\rho (.)}\vert f\vert \Vert _{L_{p}(B(x,r))} \lesssim \ \Vert I_{\rho (.)}(\vert f\vert \chi _{_{B(x,2r)}} ) \Vert _{L_{p}(B(x,r))} + r^{\frac{n}{p}} \left( \overline{I}_{\rho (.), 2r} \vert f\vert \right) (x), \end{aligned}$$

and

$$\begin{aligned} \Vert I_{\rho (.)}\vert f\vert \Vert _{WL_{p}(B(x,r))} \lesssim \ \Vert I_{\rho (.)}(\vert f\vert \chi _{_{B(x,2r)}} ) \Vert _{WL_{p}(B(x,r))} + r^{\frac{n}{p}} \left( \overline{I}_{\rho (.), 2r} \vert f\vert \right) (x), \end{aligned}$$

uniformly in \(x \in \mathbb {R}^{n}, r>0\) and \(f \in \mathfrak {M}(\mathbb {R}^{n}).\)

Also, by Condition 3) of Remark 3.2

$$\begin{aligned} J \ge _{C1} \left[ \int _{B(x,r)}^{} \left( \int _{^{c}B(x,2r)}^{}\rho (\vert x-z\vert )\vert f(z)\vert dz\right) ^{p} dy\right] ^{\frac{1}{p}}=_{C1}^{-1}v_{n}^{\frac{1}{p}}r^{\frac{n}{p}}\left( \overline{I}_{\rho (.), 2r} |f|\right) (x). \end{aligned}$$

Hence, by (3.6)

$$\begin{aligned} \Vert I_{\rho (.)}\vert f\vert \Vert _{L_{p}(B(x,r))} \gtrsim \Vert I_{\rho (.)}(\vert f\vert \chi _{_{B(x,2r)}}) \Vert _{L_{p}(B(x,r))} + r^{\frac{n}{p}} \left( \overline{I}_{\rho (.), 2r} \vert f \vert \right) (x), \end{aligned}$$

uniformly in \(x \in \mathbb {R}^{n}, r>0\) and \(f \in \mathfrak {M}(\mathbb {R}^{n}).\)

Finally, by adding inequalities (3.1) and (3.7), we get that

$$\begin{aligned} \Vert I_{\rho (.)}\vert f\vert \Vert _{WL_{p}(B(x,r))} \gtrsim \Vert I_{\rho (.)}(\vert f\vert \chi _{_{B(x,2r)}}) \Vert _{WL_{p}(B(x,r))} + r^{\frac{n}{p}} \left( \overline{I}_{\rho (.), 2r} \vert f\vert \right) (x), \end{aligned}$$

uniformly in \(x \in \mathbb {R}^{n}, r>0\) and \(f \in \mathfrak {M}(\mathbb {R}^{n}).\)

Lemma 3.3

Let, for \(n \in \mathbb {N},\rho \in S_{n}\), \(1\le p_{1}<p_{2}<\infty\), and

$$\begin{aligned} \varphi _{n,\rho , p_{1},p_{2}}(t) =\rho (t) t^{n\left( \frac{1}{p_{1}^{\prime }}+\frac{1}{p_{2}}\right) }, \ t>0, \end{aligned}$$
(3.8)

where \(p_{1}^{\prime }\) is the conjugate number to \(p_{1}.\)

1. Assume that \(\rho\) is such that the function \(\varphi _{n, \rho , p_{1}, p_{2}}\) is almost non-decreasing on \((0,\infty )\), that is for some \(c>0\)

$$\begin{aligned} \varphi _{n,\rho , p_{1},p_{2}}(t_{1}) \le c\varphi _{n,\rho , p_{1},p_{2}}(t_{2}) \ \text{for all} \ 0 < t_{1} < t_{2} < \infty . \end{aligned}$$
(3.9)

If \(1<p_{1}<p_{2}<\infty\), then

$$\begin{aligned} \Vert I_{\rho (\cdot )}\left( \vert f\vert \chi _{_{B(x,2r)}}\right) \Vert _{L_{p_{2}}(B(x,r))}\ \lesssim \ \varphi _{n,\rho , p_{1},p_{2}}(r) \Vert f\Vert _{L_{p_{1}}(B(x,2r))} \end{aligned}$$
(3.10)

uniformly in \(x\in \mathbb {R}^{n}\), \(r>0\) and \(f\in L_{p_{1}}(B(x,2r))\).

Also, if \(p_{1}=1\), \(1< p_{2} < \infty\), then

$$\begin{aligned} \Vert I_{\rho (\cdot )}\left( \vert f\vert \chi _{_{B(x,2r)}}\right) \Vert _{WL_{p_{2}}(B(x,r))}\ \lesssim \ \varphi _{n,\rho , p_{1},p_{2}}(r) \Vert f\Vert _{L_{p_{1}}(B(x,2r))} \end{aligned}$$
(3.11)

uniformly in \(x\in \mathbb {R}^{n}\), \(r>0\) and \(f\in L_{1}(B(x,2r))\).

2. Inequality (3.10) also holds for \(p_{1}=1\) and \(1\le p_{2}\le \infty\) under the assumption

$$\begin{aligned} \Vert \rho (t)t^{\frac{n-1}{p_{2}}} \Vert _{L_{p_{2}}(0,r)}\lesssim \rho (r)r^{\frac{n}{p_{2}}} \end{aligned}$$
(3.12)

uniformly in \(r >0,\) replacing assumption (3.9).

3. Inequality (3.10) and hence inequality (3.11) also holds for \(1\le p_{1}< \infty\) and \(0 <p_{2}\le p_{1}\) under the assumption

$$\begin{aligned} \Vert \rho (t)t^{n-1} \Vert _{L_{1}(0,r)}\lesssim \rho (r)r^{n} \end{aligned}$$
(3.13)

uniformly in \(r >0,\) replacing assumption (3.9).

4. Condition (3.13) is necessary for the validity of inequalities (3.10) and (3.11) for all \(0<p_{1},p_{2} \le \infty\).

5. Condition (3.13) is necessary and sufficient for the validity of inequalities (3.10) and (3.11) for all \(1\le p_{1}< \infty\) and \(0<p_{2}\le p_{1}\).

Proof

1. Let \(1\le p_{1}<p_{2}<\infty\), \(x\in \mathbb {R}^{n}\), \(r>0\), \(z\in B(x,r)\) and \(f\in L_{p_{1}}(B(x,2r))\). Then

$$\begin{aligned} \Big (I_{\rho (\cdot )}\left( \vert f \vert \chi _{_{B(x,2r)}} \right) \Big )(z)=\int \limits _{\mathbb {R}^{n}}\rho ( \vert z-y \vert ) \vert f(y) \vert \chi _{_{B(x,2r)}} (y)dy \end{aligned}$$
$$\begin{aligned} =\int \limits _{B(x,2r)} \rho \left( \vert z-y \vert \right) \vert z-y \vert ^{n\left( 1-\frac{1}{p_{1}}+\frac{1}{p_{2}}\right) } \ \frac{\vert f(y) \vert \chi _{_{B(x,2r)}}(y)}{ \vert z-y \vert ^{n-n(\frac{1}{p_{1}}-\frac{1}{p_{2}})}}dy \end{aligned}$$
$$\begin{aligned} \le \Big (\underset{\underset{y\in B(x,2r)}{z\in B(x,r)}}{\sup } \varphi _{n,\rho , p_{1},p_{2}}(\vert z-y \vert ) \Big ) \Big (I_{n\left( \frac{1}{p_{1}}-\frac{1}{p_{2}}\right) }\left( \vert f \vert \chi _{_{B(x,2r)}}\right) \Big )(z) . \end{aligned}$$

Since the function \(\varphi _{n,\rho , p_{1},p_{2}}\) is almost non-decreasing on \((0,\infty )\) and, for \(z\in B(x,r)\), \(y\in B(x,2r)\),

$$\begin{aligned} \vert z-y \vert \le \vert z-x \vert + \vert x-y \vert \le r+2r=3r, \end{aligned}$$

we have by (3.9)

$$\begin{aligned} \underset{\underset{y\in B(x,2r)}{z\in B(x,r)}}{\sup } \varphi _{n,\rho , p_{1},p_{2}}(\vert z-y \vert ) \le c \varphi _{n,\rho , p_{1},p_{2}}(3r)=c3^{n(1-\frac{1}{p_{1}}+\frac{1}{p_{2}})}\rho (3r)r^{n(1-\frac{1}{p_{1}}+\frac{1}{p_{2}})}. \end{aligned}$$

By Remark 3.5 with \(\gamma =3\) it follows that

$$\begin{aligned} \rho (3r) \le c_{23}\rho (r),\ r>0. \end{aligned}$$

Hence,

$$\begin{aligned} \underset{\underset{y\in B(x,2r)}{z\in B(x,r)}}{\sup } \varphi _{n,\rho , p_{1},p_{2}}(\vert z-y \vert ) \le c\ c_{23} \ 3^{n(1-\frac{1}{p_{1}}+\frac{1}{p_{2}})} \varphi _{n,\rho , p_{1},p_{2}}(r) \end{aligned}$$

and

$$\begin{aligned} \Big (I_{\rho (\cdot )}\left( \vert f \vert \chi _{_{B(x,2r)}} \right) \Big )(z)\lesssim \varphi _{n,\rho , p_{1},p_{2}}(r) \Big (I_{n\left( \frac{1}{p_{1}}-\frac{1}{p_{2}}\right) }\left( \vert f \vert \chi _{_{B(x,2r)}} \right) \Big )(z) \end{aligned}$$
(3.14)

uniformly in \(x\in \mathbb {R}^{n}\), \(r>0\), \(z\in B(x,r)\) and \(f\in L_{p_{1}}(B(x,2r))\).

Next, we apply the well-known inequalities for the Riesz potential. If \(1<p_{1}<p_{2}<\infty\), then

$$\begin{aligned} \Vert I_{n\left( \frac{1}{p_{1}}-\frac{1}{p_{2}}\right) }|f|\Vert _{L_{p_{2}}(\mathbb {R}^{n})}\lesssim \Vert f\Vert _{L_{p_{1}}(\mathbb {R}^{n})} \end{aligned}$$
(3.15)

uniformly in \(f\in L_{p_{1}}(\mathbb {R}^{n})\). Also, if \(1<p_{2}<\infty\), then

$$\begin{aligned} \Vert I_{n\left( 1-\frac{1}{p_{2}}\right) }|f|\Vert _{WL_{q}(\mathbb {R}^{n})}\lesssim \Vert f\Vert _{L_{1}(\mathbb {R}^{n})} \end{aligned}$$
(3.16)

uniformly in \(L_{1}(\mathbb {R}^{n})\).

If \(1<p_{1}<p_{2}<\infty\), then, by (3.14) and (3.15), it follows that

$$\begin{aligned} \Vert I_{\rho (\cdot )}\left( \vert f \vert \chi _{_{B(x,2r)}} \right) \Vert _{L_{p_{2}}(\mathbb {R}^{n})} \lesssim \varphi _{n,\rho , p_{1},p_{2}}(r)\ \Vert \ |f|\chi _{_{B(x,2r)}} \Vert _{L_{p_{1}}(\mathbb {R}^{n})} \end{aligned}$$
$$\begin{aligned} =\varphi _{n,\rho , p_{1},p_{2}}(r) \Vert f\Vert _{L_{p_{1}}(B(x,2r))} \end{aligned}$$

uniformly in \(x\in \mathbb {R}^{n}\), \(r>0\) and \(f\in L_{p_{1}}(B(x,2r))\), which is inequality (3.10).

Respectively, if \(1<p_{2}<\infty\), then by (3.14) and (3.16) there follows inequality (3.11).

2. If \(p_{1}=1\) and \(1\le p_{2}\le \infty ,\) then, by applying Young’s inequality for truncated convolutions, we get

$$\begin{aligned} \parallel I_{\rho (.)} (\vert f \vert \chi _{_{B(x,2r)}} )\parallel _{L_{p_{2}}(B(x,r))}= \left\| \int _{B(x,2r) }^{} \rho (|.-y|) \vert f(y) \vert dy\right\| _{L_{p_{2}}(B(x,r))} \end{aligned}$$
$$\begin{aligned} \le \parallel \rho \parallel _{L_{p_{2}}(B(x,r)-B(x,2r))}\parallel f\parallel _{L_{1}(B(x,2r))} \end{aligned}$$
$$\begin{aligned} = \parallel \rho \parallel _{L_{p_{2}}(B(0,3r))}\parallel f\parallel _{L_{1}(B(x,2r))} \end{aligned}$$
$$\begin{aligned} = \sigma _{n}^{\frac{1}{p_{2}}}\parallel \rho (t)t^{\frac{n-1}{p_{2}}} \parallel _{L_{p_{2}}(0,3r)}\parallel f\parallel _{L_{1}(B(x,2r))}, \end{aligned}$$

where \(\sigma _{n}=nv_{n}\) is the surface area of the unit ball in \(\mathbb {R}^{n}.\)

By inequality (3.12) and Remark 3.5 with \(\gamma = 3\) it follows that

$$\begin{aligned} \parallel \rho (t)t^{\frac{n-1}{p_{2}}} \parallel _{L_{p_{2}}(0,3r)}\lesssim \rho (3r)r^{\frac{n}{p_{2}}}\lesssim \rho (r)r^{\frac{n}{p_{2}}}=\varphi _{n,\rho ,1,p_{2}}(r), \end{aligned}$$

which implies inequality (3.10).

3. If \(1\le p_{2}=p_{1}< \infty ,\) then similarly to Step 2

$$\begin{aligned} \parallel I_{\rho (.)} (\vert f \vert \chi _{_{B(x,2r)}} )\parallel _{L_{p_{1}}(B(x,r))}\le \parallel \rho \parallel _{L_{1}(B(x,r)-B(x,2r))}\parallel f\parallel _{L_{p_{1}}(B(x,2r))} \end{aligned}$$
$$\begin{aligned} =\sigma _{n}\parallel \rho (t)t^{n-1} \parallel _{L_{1}(0,3r)} \parallel f\parallel _{L_{p_{1}}(B(x,2r))}. \end{aligned}$$

By inequality (3.13) and Remark 3.5 with \(\gamma =3\) it follows that

$$\begin{aligned} \parallel \rho (t)t^{n-1} \parallel _{L_{1}(0,3r)} \lesssim \rho (3r)r^{n}\lesssim \rho (r)r^{n} =\varphi _{n,\rho ,p_{1}, p_{1}}(r), \end{aligned}$$

which implies inequality (3.10).

If \(0<p_{2}< p_{1}, 1\le p_{1}<\infty ,\) then, by applying Hölder’s inequality and inequality (3.10) with \(p_{2}=p_{1}\) we get

$$\begin{aligned} \parallel I_{\rho (.)} ( \vert f \vert \chi _{_{B(x,2r)}} )\parallel _{L_{p_{2}}(B(x,r))}\le (v_{n}r^{n})^{\frac{1}{p_{2}}-\frac{1}{p_{1}}}\parallel I_{\rho (.)} (\vert f \vert \chi _{_{B(x,2r)}} )\parallel _{L_{p_{1}}(B(x,r))} \end{aligned}$$
$$\begin{aligned} \lesssim \rho (r)r^{n\left( \frac{1}{p_{1}^{\prime }}+\frac{1}{p_{2}}\right) }\parallel f\parallel _{L_{p_{1}}(B(x,2r))}= \varphi _{n, \rho , p_{1}, p_{2}} (r)\parallel f\parallel _{L_{p_{1}}(B(x,2r))} , \end{aligned}$$

which is inequality (3.10).

4. Assume that for some \(0<p_{1},p_{2}\le \infty\) inequality (3.10) and (3.11) is satisfied. If inequality (3.10) is satified, then inequality (3.11) is also satisfied. Take in this inequality \(x=0\) and \(f\equiv 1\). Then for any \(y\in B(0,r)\) we have \(B(y,2r) \supset B(0,r)\) and

$$\begin{aligned} I_{\rho (.)} \big (\chi _{_{B(0,2r)}}\big )(y)= \int _{B(0,2r)}\rho (y-z)dz=\int _{B(y,2r)}\rho (u)du \end{aligned}$$
$$\begin{aligned} \ge \int _{B(0,r)}\rho (u) du =\sigma _{n} {\int _{0}^{r}} \rho (t) t^{n-1}dt. \end{aligned}$$

By Remark 3.1

$$\begin{aligned} \left\| I_{\rho (.)} \big (\chi _{_{B(0,2r)}}\big )\right\| _{WL_{p_{2}}(B(0,r))}\gtrsim r^{\frac{n}{p_{2}}}{\int _{0}^{r}}\rho (t) t^{n-1}dt \end{aligned}$$

and \(\left\| \chi _{_{B(0,2r)}}\right\| _{L_{p_{2}}(B(0,r))}= (\sigma _{n} r^{n})^{\frac{1}{p_{1}}}\), hence by (3.11)

$$\begin{aligned} r^{\frac{n}{p_{2}}}{\int _{0}^{r}}\rho (t) t^{n-1}dt\lesssim \rho (r) r^{n\left( \frac{1}{p'_{1}}+\frac{1}{p_{2}}\right) }r^{\frac{n}{p_{1}}} \end{aligned}$$

uniformly in \(r>0\), which implies inequality (3.13).

5. The last statement of Lemma 3.3 follows by Steps 3 and 4.

Remark 3.6

If \(1 \le p_{1}<p_{2}< \infty\) and

$$\begin{aligned} \lim \limits _{t \rightarrow 0^{+}} \varphi _{n, \rho , p_{1}, p_{2}}(t)= 0, \end{aligned}$$
(3.17)

then inequality (3.10) for \(1<p_{1}<p_{2}<\infty\) and inequality (3.11) for \(1<p_{2}<\infty\) cannot hold for any \(f \in L_{p_{1}}{(\mathbb {R}^{n})}\), \(f \in L_{1}(\mathbb {R}^{n})\), respectively, not equivalent to 0 on \(\mathbb {R}^{n}\). Indeed, by passing to the limit as \(r \rightarrow \infty ,\) in (3.10) and (3.11), it follows that \(\parallel I_{\rho (.)}|f| \parallel _{L_{p_{2}}(\mathbb {R}^{n})}= 0\), \(\parallel I_{\rho (.)}|f| \parallel _{WL_{p_{2}}(\mathbb {R}^{n})}= 0,\) hence, f is equivalent to 0 on \(\mathbb {R}^{n}.\)

If \(\rho (t)= t^{\alpha - n}\), \(0<\alpha <n\) and \(1\le p_{1}<p_{2},\) then Condition (3.9) reduces to the condition \(\alpha \ge n(\frac{1}{p_{1}}-\frac{1}{p_{2}}),\) Condition (3.12) reduces to the condition \(\alpha > n(1-1/{p_{2}})\) and Condition (3.13) is satisfied since \(\alpha >0.\)

Corollary 3.1

Let the assumptions of Lemma 3.3 for \(n, \rho , p_{1}, p_{2}\) and the function \(\varphi _{n,\rho , p_{1}, p_{2}}\) be satisfied. Then, for \(1<p_{1}<p_{2}< \infty ,\) for \(p_{1}=1, 1<p_{2}\le \infty ,\) and for \(1\le p_{1}< \infty , 0<p_{2}\le p_{1}\)

$$\begin{aligned} \parallel I_{\rho (.)}\vert f\vert \parallel _{L_{p_{2}}(B(x,r))}\lesssim \varphi _{n,\rho , p_{1}, p_{2}}(r)\parallel f\parallel _{L_{p_{1}}(B(x,2r))} + r^{\frac{n}{p_{2}}} \left( \overline{I}_{\rho (.), 2r} \vert f \vert \right) (x) \end{aligned}$$
(3.18)

uniformly in \(x \in \mathbb {R}^{n}\), \(r>0\) and \(f \in \mathfrak {M}(\mathbb {R}^{n})\bigcap L_{p_{1}}(B(x,2r))\) and, for \(1<p_{2}<\infty\)

$$\begin{aligned} \parallel I_{\rho (.)}\vert f\vert \parallel _{WL_{p_{2}}(B(x,r))} \lesssim \varphi _{n,\rho , 1, p_{2}}(r)\parallel f\parallel _{L_{1}(B(x,2r))} + r^{\frac{n}{p_{2}}} \left( \overline{I}_{\rho (.), 2r} \vert f \vert \right) (x) \end{aligned}$$
(3.19)

uniformly in \(x \in \mathbb {R}^{n}\), \(r>0\) and \(f \in \mathfrak {M}(\mathbb {R}^{n})\bigcap L_{1}(B(x,2r)).\)

Lemma 3.4

Let \(f \in \mathfrak {M}(\mathbb {R}^{n})\) be a non-negative function and \(\rho\) be a non-negative, non-increasing, continuously differentiable function on \((0,\infty )\) such that \(\lim _{t\rightarrow +\infty }\rho (t)=0.\) Then for any \(x \in \mathbb {R}^{n}\) and \(r>0\)

$$\begin{aligned} \int _{c_{B(x,r)}}^{}\rho (\vert x-y\vert )f(y)dy = \int _{r}^{\infty }\left( \int _{B(x,t)\setminus B(x,r)}^{ }f(y)dy\right) \vert \rho ^{\prime }(t)\vert dt. \end{aligned}$$
(3.20)

For \(\rho (t)=t^{- \beta }\), \(t>0\), \(\beta >0\) this lemma was proved in [3] (Lemma 3).

Proof

By applying the Fubini theorem we get

$$\begin{aligned} \int _{c_{B(x,r)}}^{}\rho (\vert x-y \vert )f(y)dy= & {} \int _{y : \vert x-y\vert>r}^{}\rho (\vert x-y \vert )f(y)dy \\= & {} \int _{y : \vert x-y\vert>r}^{}\left( \int _{\vert x-y\vert }^{\infty }\vert \rho ^{\prime }(t)\vert dt\right) f(y)dy \\= & {} \int _{r}^{\infty }\left( \int _{y : \vert x-y\vert >r, \vert x-y\vert <t }^{ }\vert \rho ^{\prime }(t)\vert f(y)dy\right) dt \\= & {} \int _{r}^{\infty }\left( \int _{B(x,t)\setminus B(x,r)}^{} f(y)dy \right) \vert \rho ^{\prime }(t)\vert dt. \end{aligned}$$

Definition 3.3

Let \(n \in \mathbb {N}, 1 \le p_{1}< \infty , 0<p_{2}\le \infty .\) Then \(\rho \in S_{n, p_{1}, p_{2}}\) if \(\rho \in \mathfrak {M^{+}}((0,\infty ))\) and there exists a positive non-increasing continuously differentiable function \(\tilde{\rho }: (0,\infty ) \rightarrow (0,\infty )\) such that

1) \(\tilde{\rho }(t)\approx \rho (t)\) uniformly in \(t>0,\)

\(2)\ \lim \limits _{t \rightarrow \infty } \tilde{\rho }(t)=0,\)

\(3)\ \tilde{\rho } \in S_{n},\)

\(4)\ {\int \limits _{0}^{1}} \tilde{\rho }(t)t^{\frac{n}{p_{1}^{\prime }}-1}dt= \infty ,\) \(\int \limits _{1}^{\infty } \tilde{\rho }(t)t^{\frac{n}{p_{1}^{\prime }}-1}dt< \infty ,\)

\(5)\ \vert \tilde{\rho }^{\prime }(t)\vert t \gtrsim \tilde{\rho }(t)\) uniformly in \(t>0,\)

6) if \(0< p_{2}\le p_{1}\) and \(1\le p_{1}< \infty\), then

$$\begin{aligned} {\int _{0}^{r}} \tilde{\rho }(t)t^{n-1} dt \lesssim \tilde{\rho }(r)r^{n} \end{aligned}$$

uniformly in \(r>0\),

7) if \(1\le p_{1}<p_{2}<\infty\), then the function \(\phi _{n,\tilde{\rho },p_{1}, p_{2}}(t)= \tilde{\rho }(t)t^{n\big (\frac{1}{p_{1}'}+\frac{1}{p_{2}}\big )}\) is almost non-decreasing on \((0,\infty )\).

Moreover, if \(p_{1}=1\) and \(1<p_{2}<\infty\), then \(\rho \in \tilde{S}_{n,1,p_{2}}\) if there exists a positive non-increasing continuously differentiable function \(\tilde{\rho }:(0,\infty )\rightarrow (0,\infty )\) such that Conditions 1)–3) and 5) are satisfied, Conditions 4) and 6) are satisfied for \(p_{1}=1\) and instead of Condition 7) the following condition is satisfied

8)

$$\begin{aligned} \big \Vert \tilde{\rho }(t)t^{\frac{n-1}{p_{2}}} \big \Vert _{L_{p_{2}}(0,r)} \lesssim \tilde{\rho }(r)r^{\frac{n}{p_{2}}} \end{aligned}$$

uniformly in \(r>0.\)

Remark 3.7

For the Riesz potential \(\rho (t) =t^{\alpha -n}\), \(0<\alpha <n\), \(\tilde{\rho }=\rho\). Condition 2) is satisfied because \(\alpha <n\), Condition 3) is satisfied because \(\alpha >0\), Condition 4) is satisfied if \(p_{1}<\infty\) and \(\alpha <\frac{n}{p_{1}}\), Condition 5) is obviously satisfied, Condition 6) is satisfied because \(\alpha > 0,\) Condition 7) is satisfied if \(\alpha \ge n(1/{p_{1}}-1/{p_{2}},\) Condition 8) is satisfied if \(\alpha > n(1-1/{p_{2}}).\)

Remark 3.8

Clearly, due to Condition 1), Conditions 2)–4), 6)–8) are equivalent to the conditions, obtained from them by replacing \(\tilde{\rho }\) by \({\rho }\)

Theorem 3.1

Let \(n \in \mathbb {N}, 1 \le p_{1}<\infty , 0<p_{2} \le \infty\).

1. If \(1<p_{1}<p_{2}<\infty\) or \(1 \le p_{1}< \infty\) and \(0< p_{2}\le p_{1}\), and \(\rho \in S_{n,p_{1}.p_{2}},\) then

$$\begin{aligned} \parallel I_{\rho (.)}(\vert f\vert )\parallel _{L_{p_{2}}(B(x,r))} \lesssim r^{\frac{n}{p_{2}}} \int _{r}^{\infty } \rho (t)t^{\frac{n}{p_{1}^{\prime }}-1}\parallel f\parallel _{L_{p_{1}}(B(x,t))}dt \end{aligned}$$
(3.21)

uniformly in \(x \in \mathbb {R}^{n}, r>0\) and \(f \in L_{p_{1}}^{\text {loc}}(\mathbb {R}^{n}).\)

2. If \(p_{1}=1\) and \(0<p_{2}<\infty ,\) and \(\rho \in \tilde{S}_{n,1,p_{2}},\) then

$$\begin{aligned} \parallel I_{\rho (.)}\vert f \vert \parallel _{WL_{p_{2}}(B(x,r))} \thickapprox \parallel I_{\rho (.)}\vert f \vert \parallel _{L_{p_{2}}(B(x,r))}\thickapprox r^{\frac{n}{p_{2}}} \int _{r}^{\infty } \rho (t)t^{-1} \parallel f\parallel _{L_{1}(B(x,t))}dt \end{aligned}$$
(3.22)

uniformly in \(x \in \mathbb {R}^{n}, r>0\) and \(f \in L_{1}^{\text {loc}}(\mathbb {R}^{n}).\)

3. If \(p_{1}=1\) and \(1<p_{2}<\infty ,\) and \(\rho \in S_{n,1,p_{2}},\) then

$$\begin{aligned} \parallel I_{\rho (.)}\vert f \vert \parallel _{WL_{p_{2}}(B(x,r))} \thickapprox r^{\frac{n}{p_{2}}} \int _{r}^{\infty } \rho (t)t^{-1} \parallel f\parallel _{L_{1}(B(x,t))}dt \end{aligned}$$
(3.23)

uniformly in \(x \in \mathbb {R}^{n}, r>0\) and \(f \in L_{1}^{\text {loc}}(\mathbb {R}^{n}).\)

For \(\rho (t) = t^{\alpha -n}\), \(0<\alpha <n,\) hence for the Riesz potential \(I_{\alpha }\), this theorem is proved in [6] (Lemma 3.6 and Theorem 3.9).

Remark 3.9

If \(p_{1}=1\) and \(0<p_{2}<\infty\) and \(\rho \in \tilde{S}_{n,1 ,p_{2}},\) equivalence (3.22) holds if Condition 6) of Definition 3.3 for \(0 < p_{2} \le 1\) and Condition 7) of Definition 3.3 for \(1< p_{2} < \infty\) are satisfied. If \(\rho (t)=t^{\alpha -n}, 0<\alpha <n,\) then this means that \(n(1-\frac{1}{p_{2}})_{+}<\alpha <n.\)

If \(p_{1}=1\) and \(1<p_{2}<\infty\) and \(\rho \in S_{n,1 ,p_{2}}\), equivalence (3.23) holds if Condition 8) of Definition 3.3 is satisfied. If \(\rho (t)=t^{\alpha -n}\), \(0<\alpha <n,\) then this means that \(n(1-\frac{1}{p_{2}})\le \alpha <n.\)

In particular, for \(\alpha =n(1-1/{p_{2}})\) Statement 3 of Theorem 3.1 holds, while, as proved in Lemma 3.3 of [6], Statement 2 does not hold.

Proof

Step 1 (proof of (3.21)). We apply equivalence (3.2).

1.1a. To the first summand in the right-hand side of (3.2) we apply Condition 2) of Definition 3.1 with \(\rho\) replaced by \(\tilde{\rho }, s\) by rt by 2r and inequality (3.10) and get that

$$\begin{aligned}&r^{\frac{n}{p_{2}}} \int _{r}^{\infty } \rho (t)t^{ \frac{n}{p_{1}^{\prime }}-1}\parallel f\parallel _{L_{p_{1}}(B(x,t))}dt \\&\gtrsim r^{\frac{n}{p_{2}}} \int _{r}^{\infty } \tilde{\rho }(t)t^{ \frac{n}{p_{1}^{\prime }}-1} \parallel f\parallel _{L_{p_{1}}(B(x,t))}dt \\&\ge r^{\frac{n}{p_{2}}} \int _{r}^{2r} \tilde{\rho }(t) t^{\frac{n}{p_{1}^{\prime }}-1} \parallel f\parallel _{L_{p_{1}}(B(x,t))}dt \\&\ge r^{\frac{n}{p_{2}}} \tilde{\rho }(2r)\left( \int _{r}^{2r} t^{ \frac{n}{p_{1}^{\prime }}-1}dt \right) \parallel f\parallel _{L_{p_{1}}(B(x,r))} \end{aligned}$$
$$\begin{aligned} \gtrsim \tilde{\rho }(r)r^{\frac{n}{p_{1}^{\prime }}+\frac{n}{p_{2}}} \parallel f\parallel _{L_{p_{1}}(B(x,r))}= \varphi _{n,\tilde{\rho },p_{1}, p_{2}}(r)\parallel f\parallel _{L_{p_{1}}(B(x,r))} \end{aligned}$$
$$\begin{aligned} \gtrsim \parallel I_{\tilde{\rho }(.)} (|f|\chi _{_{B(x,2r)}} )\parallel _{L_{p_{2}}(B(x,r))}\gtrsim \parallel I_{\rho (.)} (\vert f\vert \chi _{_{B(x,2r)}} )\parallel _{L_{p_{2}}(B(x,r))} \end{aligned}$$
(3.24)

uniformly in \(x \in \mathbb {R}^{n},\) \(r>0\) and \(f \in L^{\text {loc}}_{1}( \mathbb {R}^{n}).\)

1.1b (second proof of inequality (3.24)). To the first summand in the right-hand side of (3.2) we apply inequality (3.10) and Condition 2) of Definition 3.1 with \(\rho\) replaced by \(\tilde{\rho }\), firstly, s replaced by r and t by 2r,  secondly, s replaced by \(\frac{\tau }{2}\) and t by \(\tau ,\) and we get that

$$\begin{aligned} \parallel I_{\rho (.)} (\vert f\vert \chi _{B(x,2r)})\parallel _{L_{p_{2}}(B(x,r))}\lesssim \parallel I_{\tilde{\rho }(.)} (\vert f\vert \chi _{B(x,2r)})\parallel _{L_{p_{2}}(B(x,r))} \end{aligned}$$
$$\begin{aligned}\lesssim & {} \tilde{\rho }(r)r^{n\Big (\frac{1}{p^{\prime }_{1}}+\frac{1}{p_{2}}\Big )} \parallel f\parallel _{L_{p_{1}}(B(x,2r))} \lesssim\; \tilde{\rho }(2r)r^{n\Big (\frac{1}{p^{\prime }_{1}}+\frac{1}{p_{2}}\Big )} \parallel f\parallel _{L_{p_{1}}(B(x,2r))}\\\lesssim & {} r^{\frac{n}{p_{2}}}\left( \int _{2r}^{4r}\tilde{\rho }(t)t^{\frac{n}{p^{\prime }_{1}}-1}dt\right) \parallel f\parallel _{L_{p_{1}}(B(x,2r))} \lesssim\; r^{\frac{n}{p_{2}}} \int _{2r}^{\infty }\tilde{\rho }(t)t^{\frac{n}{p^{\prime }_{1}}-1}\parallel f\parallel _{L_{p_{1}}(B(x,2t))}dt \\= & {} 2^{-\frac{n}{p^{\prime }_{1}}}r^{\frac{n}{p_{2}}}\int _{r}^{\infty }\tilde{\rho }\Big (\frac{\tau }{2}\Big )\tau ^{\frac{n}{p^{\prime }_{1}}-1}\parallel f\parallel _{L_{p_{1}}(B(x,\tau ))}d\tau \;\lesssim\; r^{\frac{n}{p_{2}}}\int _{r}^{\infty }\tilde{\rho }(\tau )^{\frac{n}{p^{\prime }_{1}}-1}\parallel f\parallel _{L_{p_{1}}(B(x,\tau ))}d\tau \\\lesssim & {} r^{\frac{n}{p_{2}}}\int _{r}^{\infty }\rho (\tau )^{\frac{n}{p^{\prime }_{1}}-1}\parallel f\parallel _{L_{p_{1}}(B(x,\tau ))}d\tau \end{aligned}$$

uniformly in \(x \in \mathbb {R}^{n}, r>0\) and \(f \in L_{p_{1}}^{\text {loc}}(\mathbb {R}^{n}).\)

1.2a. In order to estimate the second summand in the right-hand side of (3.2) we obtain an estimate for \((\overline{I}_{\rho (.),r}|f|)(x).\) First we note that

$$\begin{aligned} \int _{2r}^{\infty } \tilde{\rho }(t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))}dt= \sum _{k=1}^{\infty } \int _{2^{k}r}^{2^{k+1}r } \tilde{\rho }(t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))}dt \end{aligned}$$
$$\begin{aligned} \ge \sum _{k=1}^{\infty }\tilde{\rho }(2^{k}r) \parallel f\parallel _{L_{1}(B(x,2^{k}r))}\int _{2^{k}r}^{2^{k+1}r }\frac{dt}{t} = \ln 2 \sum _{k=1}^{\infty }\tilde{\rho }(2^{k}r) \parallel f\parallel _{L_{1}(B(x,2^{k}r))} \end{aligned}$$
$$\begin{aligned} \ge \ln 2 \sum _{k=1}^{\infty }\tilde{\rho }(2^{k}r) \parallel f\parallel _{L_{1}(B(x,2^{k}r)\setminus B(x,2^{k-1}r))} \end{aligned}$$

Since by Condition 2) of Definition 3.1 \(\tilde{\rho }(2^{k}r)\ge c_{1}\tilde{\rho }(2^{k-1}r)\) and \(\vert x-y \vert \ge 2^{k-1}r\) for all \(y \in B(x,2^{k}r)\setminus B(x,2^{k-1}r)\), it follows that

$$\begin{aligned} \int _{2r}^{\infty } \tilde{\rho }(t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))}dt \gtrsim \sum _{k=1}^{\infty }\int _{B(x,2^{k}r)\setminus B(x,2^{k-1}r)}^{}\tilde{\rho }(2^{k-1}r)\vert f(y)\vert dy \end{aligned}$$
$$\begin{aligned} \ge \sum _{k=1}^{\infty }\int _{B(x,2^{k}r)\setminus B(x,2^{k-1}r)}^{}\tilde{\rho }(\vert x-y\vert )\vert f(y)\vert dy = \int _{^{c}B(x,r)}^{}\tilde{\rho }(\vert x-y\vert )\vert f(y)\vert dy = (\overline{I}_{\tilde{\rho }(.),r}\vert f\vert )(x). \end{aligned}$$

So,

$$\begin{aligned} (\overline{I}_{\tilde{\rho }(.),r}\vert f\vert )(x) \lesssim \int _{2r}^{\infty } \tilde{\rho }(t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))}dt \end{aligned}$$
(3.25)

uniformly in \(x \in \mathbb {R}^{n}, r>0\) and \(f \in L_{1}^{loc}(\mathbb {R}^{n}).\)

Hence, by applying Hölder’s inequality, we get that

$$\begin{aligned} r^{\frac{n}{p_{2}}} \left( \overline{I}_{\rho (.), 2r} \vert f\vert \right) (x) \lesssim r^{\frac{n}{p_{2}}} \left( \overline{I}_{ \tilde{\rho }(.), 2r} \vert f\vert \right) (x) \lesssim r^{\frac{n}{p_{2}}}\int _{4r}^{\infty }\tilde{\rho }(t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))}dt\end{aligned}$$
$$\begin{aligned} \lesssim r^{\frac{n}{p_{2}}}\int _{4r}^{\infty }\tilde{\rho }(t)t^{\frac{n}{p_{1}^{\prime }}-1}\parallel f\parallel _{L_{p_{1}}(B(x,t))}dt \lesssim r^{\frac{n}{p_{2}}}\int _{r}^{\infty }\rho (t)t^{\frac{n}{p_{1}^{\prime }}-1}\parallel f\parallel _{L_{p_{1}}(B(x,t))}dt \end{aligned}$$
(3.26)

uniformly in \(x \in \mathbb {R}^{n}, r>0\) and \(f \in L_{1}^{loc}(\mathbb {R}^{n}).\)

Step 2 (proof of equivalences (3.22) and (3.23) for \(p_{1}=1\)). We apply equivalences (3.2) and (3.3).

2.1a. Under the assumption \(\tilde{\rho } \in \tilde{S}_{n,1,p_{2}}\) inequality (3.12) holds for \(p_{1}=1\) and \(1\le p_{2}\le \infty\) and inequality (3.13) holds for \(p_{1}=1\) and \(0<p_{2}\le 1,\) therefore, Lemma 3.3 ensures the validity of inequality (3.10) with \(p_{1}=1\) and we have

$$\begin{aligned} r^{\frac{n}{p_{2}}}\int _{r}^{\infty }\rho (t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))} dt\gtrsim r^{\frac{n}{p_{2}}}\int _{r}^{\infty }\tilde{\rho }(t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))}dt \end{aligned}$$
$$\begin{aligned} \gtrsim \varphi _{n, \tilde{\rho },1,p_{2}}(r)\parallel f\parallel _{L_{1}(B(x,r))} \end{aligned}$$
$$\begin{aligned} \gtrsim \parallel I_{\rho (.)}(\vert f\vert \chi _{B(x,2r)}) \parallel _{L_{p_{2}}(B(x,r))}\ge \parallel I_{\rho (.)}(\vert f\vert \chi _{B(x,2r)}) \parallel _{WL_{p_{2}}(B(x,r))} \end{aligned}$$
(3.27)

uniformly in \(x\in \mathbb {R}^{n}, \ r>0\) and \(f \in L^{\text {loc}}_{1}( \mathbb {R}^{n})\) and we get the estimate above for the first summand in (3.22).

2.1b. If \(\rho \in S_{n,1,p_{2}},\) then condition (3.9) holds for \(p_{1}=1\) and \(1<p_{2}< \infty ,\) therefore, Lemma 3.3 ensures the validity of inequality (3.11) and we, respectively, have

$$\begin{aligned} r^{\frac{n}{p_{2}}}\int _{r}^{\infty }\rho (t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))} dt \end{aligned}$$
$$\begin{aligned} \gtrsim r^{\frac{n}{p_{2}}}\int _{r}^{\infty }\tilde{\rho }(t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))}dt\ge \varphi _{n, \tilde{\rho },1,p_{2}}(r)\parallel f\parallel _{L_{1}(B(x,r))} \end{aligned}$$
$$\begin{aligned} \gtrsim \parallel I_{\rho (.)}(\vert f\vert \chi _{B(x,2r)}) \parallel _{WL_{p_{2}}(B(x,r))} \end{aligned}$$
(3.28)

uniformly in \(x\in \mathbb {R}^{n}, \ r>0\) and \(f \in L^{\text {loc}}_{1}( \mathbb {R}^{n})\) and we get the estimate above for the first summand in (3.23).

2.2a. If \(\tilde{\rho }\in \tilde{S}_{n,1,p_{2}}\) and \(1\le p_{2}\le \infty\), to the second summand in the right-hand side of (3.2) we apply inequality (3.25). Equivalence (3.2) and inequalities (3.25) and (3.27) imply that

$$\begin{aligned} \parallel I_{\rho (.)}\vert f\vert \parallel _{WL_{p_{2}}(B(x,r))} \le \parallel I_{\rho (.)}\vert f\vert \parallel _{L_{p_{2}}(B(x,r))}\lesssim r^{\frac{n}{p_{2}}}\ \int _{r}^{\infty }\rho (t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))}dt \end{aligned}$$
(3.29)

uniformly in \(x \in \mathbb {R}^{n},\) \(r>0\) and \(f \in L^{\text {loc}}_{1}(\mathbb {R}^{n}).\)

2.2b. Accordingly, if \(\tilde{\rho } \in S_{n,1,p_{2}},\) \(p_{1}=1\) and \(1<p_{2}<\infty ,\) then equivalence (3.3) and inequalities (3.25) and (3.28) imply that

$$\begin{aligned} \parallel I_{\rho (.)}\vert f\vert \parallel _{WL_{p_{2}}(B(x,r))} \lesssim r^{\frac{n}{p_{2}}}\ \int _{r}^{\infty }\rho (t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))}dt \end{aligned}$$
(3.30)

uniformly in \(x \in \mathbb {R}^{n},\) \(r>0\) and \(f \in L^{\text {loc}}_{1}(\mathbb {R}^{n}).\)

2.3. For all \(y \in B(x,r)\) we have \(\vert y-z \vert \le 2r\) if \(z \in B(x,r)\) and \(\vert y-z\vert \le 2 \vert x-z \vert\) if \(z \in ^{c}B(x,r)\) (since \(\vert y-z \vert \le \vert y-x \vert + \vert x-z\vert \le r+ \vert x-z\vert \le 2 \vert x-z \vert ).\) Therefore, since \(\tilde{\rho }\) is non-increasing

$$\begin{aligned} I_{\tilde{\rho }}(.)(\vert f\vert )(y)= \int _{B(x,r) }^{}\tilde{\rho }(\vert y-z \vert )\vert f(z) \vert dz + \int _{^{c}B(x,r)}^{}\tilde{\rho }(\vert y-z\vert )\vert f(z)\vert dz \end{aligned}$$
$$\begin{aligned} \ge \tilde{\rho }(2r) \int _{B(x,r)}^{}\vert f(z)\vert dz+ \int _{^{c}B(x,r)}^{}\tilde{\rho }(2\vert x-z\vert )\vert f(z)\vert dz. \end{aligned}$$

By Condition 2) of Definition 3.1 with \(s=2t\) we have \(\tilde{\rho }(2t)\ge c_{1}\tilde{\rho }(z)\) for any \(t>0,\) hence, by equality (3.18) uniformly in \(x \in \mathbb {R}^{n},\) \(r>0, \ y \in B(x,r)\) and \(f \in L^{\text {loc}}_{1}(\mathbb {R}^{n})\)

$$\begin{aligned} I_{\rho (.)}(\vert f\vert )(y)\gtrsim I_{\tilde{\rho }(.)}(\vert f)(y) \ge c_{1} \left( \tilde{\rho }(r) \int _{B(x,r)}^{}\vert f(z)\vert dz+ \int _{^{c}B(x,r)}^{} \tilde{\rho }(\vert x-z \vert )\vert f(z)\vert dz\right) \end{aligned}$$
$$\begin{aligned} =c_{1} \left( \tilde{\rho }(r) \int _{B(x,r)}^{}\vert f(z)\vert dz+ \int _{ r}^{\infty } \left( \int _{B(x,t)\setminus B(x,r)}^{}\vert f(z)\vert dz\right) \vert (\tilde{\rho })'(t)\vert dt\right) \end{aligned}$$
$$\begin{aligned} =c_{1} \Big ( \tilde{\rho }(r) \int _{B(x,r)}^{}\vert f(z)\vert dz+ \int _{ r}^{\infty } \left( \int _{B(x,t)}^{}\vert f(z)\vert dz\right) \vert (\tilde{\rho })' (t)\vert dt - \left( \int _{ r}^{\infty }\vert (\tilde{\rho })' (t)\vert dt\right) \int _{B(x,r)}^{}\vert f(z)\vert dz\Big ) \end{aligned}$$
$$\begin{aligned} = c_{1} \int _{ r}^{\infty }\left( \int _{B(x,t)}^{}\vert f(z)\vert dz\right) \vert (\tilde{\rho })' (t)\vert dt. \end{aligned}$$

Consequently, by Remark 3.1 and by Condition 5) of Definition 3.3

$$\begin{aligned} \parallel I_{\rho (.)}\vert f\vert \parallel _{L_{p_{2}}(B(x,r))}\ge \parallel I_{\rho (.)}\vert f\vert \parallel _{WL_{p_{2}}(B(x,r))}\gtrsim \parallel I_{\tilde{\rho }}\vert f\vert \parallel _{WL_{p_{2}}(B(x,r))} \end{aligned}$$
$$\begin{aligned} \ge c_{1}v_{n}^{\frac{n}{p_{2}}}r^{\frac{n}{p_{2}}}\int _{ r}^{\infty }\left( \int _{B(x,t)}^{}\vert f(z)\vert dz\right) \vert (\tilde{\rho })'(t)\vert dt \end{aligned}$$
$$\begin{aligned} \gtrsim r^{\frac{n}{p_{2}}} \int _{r}^{\infty } \tilde{\rho }(t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))}dt \gtrsim r^{\frac{n}{p_{2}}}\int _{r}^{\infty } \rho (t)t^{-1}\parallel f\parallel _{L_{1}(B(x,t))}dt \end{aligned}$$
(3.31)

uniformly in \(x \in \mathbb {R}^{n},\) \(r>0\) and \(f \in L^{\text {loc}}_{1}(\mathbb {R}^{n}).\)

Step 3. Statement 1 of Theorem 3.1 follows by inequalities (3.24) and (3.26). Statement 2 follows by inequalities (3.25), (3.27) and (3.31). Statement 3 follows by inequalities (3.25), (3.28) and (3.31).

Generalized Riesz potential and Hardy operator

Let \(\mathfrak {M}^{+}((0,\infty ))\) be the subset of \(\mathfrak {M}((0,\infty ))\) consisting of all non-negative functions on \((0,\infty ).\) We denote by \(\mathfrak {M}^{+}((0,\infty );\downarrow )\) the cone of all functions in \(\mathfrak {M}^{+}((0,\infty ))\) which are non-increasing on \((0,\infty )\) and we set

$$\begin{aligned} \mathbb {A} = \left\{ \varphi \in \mathfrak {M}^{+}((0,\infty );\downarrow ): \lim \limits _{t \rightarrow \infty } \varphi (t)=0 \right\} . \end{aligned}$$

Let H be the Hardy operator

$$\begin{aligned} \left( Hg\right) (t) := {\int _{0}^{t}}g(r)dr, \ 0< t<\infty \end{aligned}$$

Moreover, let, for \(0<p\le \infty\) and a Lebesgue measurable function \(v:(0,\infty )\rightarrow [0,\infty )\), \(L_{p_{1}v(\cdot )}(0,\infty )\) denote the space of all Lebesgue measurable functions \(f:(0,\infty )\rightarrow \mathbb {C}\) for which

$$\begin{aligned} \Vert f\Vert _{L_{ p,v(\cdot ) }(0,\infty )}= \Vert fv\Vert _{L_{p}(0,\infty )}<\infty . \end{aligned}$$

Theorem 4.1

Let \(n \in \mathbb {N}\), \(1\le p_{1}< \infty ,\) \(0<p_{2}\le \infty ,\) \(0<\theta _{2}\le \infty\), \(w_{2} \in \Omega _{\theta _{2}}\), \(\rho\) be a positive continuous function on \((0,\infty )\) and

$$\begin{aligned} \mu _{n,\rho ,p_{1}}(r)= \frac{\int _{r}^{\infty }\rho (t)t^{\frac{n}{p^{\prime }_{1}}-1}dt}{\int _{1}^{\infty }\rho (t)t^{\frac{n}{p^{\prime }_{1}}-1}dt } ,\ r>0, \end{aligned}$$
(4.1)
$$\begin{aligned} v_{2}(r)= w_{2}\left( \mu ^{(-1)}_{n,\rho ,p_{1}}(r)\right) \left( \mu ^{(-1)}_{n,\rho ,p_{1}}(r)\right) ^{\frac{n}{p_{2}}}\vert ( \mu ^{(-1)}_{n,\rho ,p_{1}}(r))^{\prime }\vert ^{\frac{1}{\theta _{2}}}, \ r>0, \end{aligned}$$
(4.2)
$$\begin{aligned} g_{n,\rho ,p_{1}}(t)= \Vert f\Vert _{L_{p_{1}}\left( B(0,\mu _{n,\rho ,p_{1}}^{(-1)}(t) )\right) }, \ t>0. \end{aligned}$$
(4.3)

1. If \(1<p_{1}<p_{2}<\infty\) or \(1\le p_{1} <\infty\) and \(0< p_{2}\le p_{1}\), and \(\rho \in S_{n,p_{1}.p_{2}}\), then

$$\begin{aligned} \Vert I_{\rho (\cdot )} f \Vert _{LM_{p_{2}\theta _{2},w_{2}(\cdot )}}\lesssim \Vert Hg_{n,\rho ,p_{1}} \Vert _{L_{\theta _{2},v_{2}(\cdot )}(0,\infty )} \end{aligned}$$
(4.4)

uniformly in \(f\in \mathfrak {M} (\mathbb {R}^{n})\).

2. If \(p_{1}= 1\) and \(0<p_{2}<\infty\), and \(\rho \in \tilde{S}_{n,1,p_{2}}\), then

$$\begin{aligned} \Vert I_{\rho (\cdot )} f \Vert _{LM_{p_{2}\theta _{2},w_{2}(\cdot )}}\approx \Vert Hg_{n,\rho , 1} \Vert _{L_{\theta _{2},v_{2}(\cdot )}(0,\infty )} \end{aligned}$$
(4.5)

uniformly in all non-negative functions \(f\in \mathfrak {M} (\mathbb {R}^{n})\).

3. If \(p_{1}=1\) and \(1<p_{2}<\infty\), and \(\rho \in S_{n,1,p_{2}}\), then

$$\begin{aligned} \Vert I_{\rho (\cdot )} f \Vert _{WLM_{p_{2}\theta _{2},w_{2}(\cdot )}}\approx \Vert Hg_{n,\rho , 1} \Vert _{L_{\theta _{2},v_{2}(\cdot )}(0,\infty )} \end{aligned}$$
(4.6)

uniformly in all non-negative functions \(f\in \mathfrak {M} (\mathbb {R}^{n})\).

Remark 4.1

If \(\rho (t)=t^{\alpha -n}\), \(1 \le p_{1}<\infty ,\) \(0< p_{2}<\infty ,\) \(0<\alpha <\frac{n}{p_{1}},\) then \(\mu _{n,\rho , p_{1}}(r)=r^{-\sigma },\) where \(\sigma =\frac{n}{p_{1}}-\alpha ,\) \(\mu _{n,\rho , p_{1}}^{(-1)}(r)=r^{- \frac{1}{\sigma }},\) \(v_{2}(r)= \sigma ^{-\frac{1}{\theta _{2}}}w_{2}(r^{-\frac{1}{\sigma }})r^{-\frac{n}{\sigma p_{2}}-\frac{1}{\sigma \theta _{2}}-\frac{1}{\theta _{2}}},\) \(g_{n,\rho , p_{1}}(t)\) \(= \parallel f\parallel _{L_{p_{1}}(B(0,t^{-\frac{1}{\sigma }}))}\) and Lemma 4.1 takes the form of Lemma 4.1 in [6].

Remark 4.2

Due to Condition 4) of Definition 3.3

$$\begin{aligned} \lim \limits _{r \rightarrow 0^{+}}\mu _{n,\rho , p_{1}}(r)=\lim _{r\rightarrow 0^{+}} \mu _{n,\tilde{\rho }, p_{1}} (r) =\infty , \lim _{r\rightarrow \infty }\mu _{n,\rho ,p_{1}} (r)= \lim _{r\rightarrow \infty } \mu _{n,\tilde{\rho },p_{1}} (r)=0 \end{aligned}$$
(4.7)

and \(\mu _{n,\rho , p_{1}}\) is a strictly decreasing continuously differentiable function on \((0,\infty ).\) Moreover,

$$\begin{aligned} \lim \limits _{r\rightarrow 0^{+}} \mu _{n,\rho , p_{1}}^{(-1)}(r) = \infty ,\ \lim \limits _{r\rightarrow \infty } \mu _{n,\rho , p_{1}}^{(-1)}(r) = 0. \end{aligned}$$
(4.8)

Proof

1. Let \(1< p_{1}< p_{2} < \infty\) or \(1 \le p_{1} \le \infty\) and \(0 < p_{2} \le p_{1}\), and \(\rho \in S_{n,p_{1},p_{2}}\). By inequality (3.21) we have \(\Big (c=\left( \int _{1}^{\infty } \rho (t)t^{\frac{n}{p'_{1}}-1}dt \right) ^{-1}\Big )\)

$$\begin{aligned} \Vert I_{\rho (\cdot )} f \Vert _{LM_{p_{2}\theta _{2},w_{2}(\cdot )}}\lesssim \Big \Vert w_{2}(r)r^{\frac{n}{p_{2}}}\int _{r}^{\infty }\rho (t) t^{ \frac{n}{p'_{1}}-1} \Vert f\Vert _{L_{p_{1}}(B(0,t))}dt\Big \Vert _{L_{\theta _{2}}(0,\infty )} \end{aligned}$$
$$\begin{aligned} =c \Big \Vert w_{2}(r)r^{\frac{n}{p_{2}}}\left( -\int _{r}^{\infty } \Vert f\Vert _{L_{p_{1}}(B(0,t))}d \mu _{n,\rho , p_{1}}(t)\right) \Big \Vert _{L_{\theta _{2}}(0,\infty )} \end{aligned}$$
$$\begin{aligned}=c\left( \mu _{n,\rho , p_{1}}(t) =\tau ,\ t=\mu _{n,\rho , p_{1}}^{(-1)}(\tau ),\ \lim \limits _{r\rightarrow \infty } \mu _{n,\rho , p_{1}}(t)=0 \right) \end{aligned}$$
$$\begin{aligned} = c\Big \Vert w_{2}(r)r^{\frac{n}{p_{2}}} \int \limits ^{ \mu _{n,\rho ,p_{1}}(r) }_{0} \Vert f\Vert _{L_{p_{1}}\left( B(0,\mu _{n,\rho , p_{1}}^{(-1)}(\tau ) )\right) } d \tau \Big \Vert _{L_{\theta _{2}}(0,\infty )} \end{aligned}$$
$$\begin{aligned} = c\Big (\mu _{n,\rho , p_{1}}(r)=u,\ r= \mu _{n,\rho , p_{1}}^{(-1)}(u),\ \lim \limits _{r\rightarrow 0} \mu _{n,\rho , p_{1}}(r)=\infty ,\ \lim \limits _{r\rightarrow \infty } \mu _{n,\rho , p_{1}}(r)=0\Big ) \end{aligned}$$
$$\begin{aligned} =c\Big \Vert w_{2}\left( \mu _{n,\rho , p_{1}}^{(-1)}(u) \right) \left( \mu _{n,\rho , p_{1}}^{(-1)}(u) \right) ^{\frac{n}{p_{2}}} \left| \left( \mu _{n,\rho , p_{1}}^{(-1)}(u) \right) ^{\prime }\right| ^{\frac{1}{\theta _{2}}}\int \limits _{0}^{u} \Vert f\Vert _{L_{p_{1}}\left( B (0, \mu _{n,\rho , p_{1}}^{(-1)}(\tau )) \right) } d\tau \Big \Vert _{L_{\theta _{2}}(0,\infty )} \end{aligned}$$
$$\begin{aligned} =c \left\| v_{2}(u) \left( Hg_{n,\rho , p_{1}}\right) (u)\right\| _{L_{\theta _{2}}(0,\infty )}= c\Vert Hg_{n,\rho , p_{1}}\Vert _{L_{\theta _{2},v_{2}(\cdot ),}(0,\infty )} \end{aligned}$$

uniformly in \(f\in \mathfrak {M} (\mathbb {R}^{n})\).

2. Let \(p_{1} =1\) and \(0 < p_{2} \le 1\), and \(\rho \in \tilde{S}_{n,p_{1},p_{2}}\). By inequality (3.22) we have similarly to Step 1

$$\begin{aligned} \Big \Vert I_{\rho (\cdot )} f \Vert _{LM_{p_{2}\theta _{2},w_{2}(\cdot )}}\approx \Vert w_{2}(r)r^{ \frac{n}{p_{2}}}\int _{r}^{\infty }\rho (t) t^{ -1} \Vert f\Vert _{L_{1}(B(0,t))}\Big \Vert _{L_{\theta _{2}}(0,\infty )} \end{aligned}$$
$$\begin{aligned} = c \Big \Vert w_{2}(r)r^{ \frac{n}{p_{2}}}\left( -\int _{r}^{\infty } \Vert f\Vert _{L_{1}(B(0,t))}d \mu _{n,\rho , 1}(t)\right) \Big \Vert _{L_{\theta _{2}}(0,\infty )} \end{aligned}$$
$$\begin{aligned} =c\left\| v_{2}(u) \left( Hg_{n,1}\right) (u)\right\| _{L_{\theta _{2}}(0,\infty )}= c\Vert Hg_{n,\rho , 1}\Vert _{L_{\theta _{2},v_{2}(\cdot ),}(0,\infty )} \end{aligned}$$

uniformly in all non-negative functions \(f\in \mathfrak {M} (\mathbb {R}^{n})\).

3. Let \(p_{1} = 1\) and \(1< p_{2} < \infty\), and \(\rho \in S_{n,1,p_{2}}\). Equivalence (4.6) follows similarly to Step 2 from equivalence (3.23). \(\square\)

Theorem 4.2

Assume that \(n \in \mathbb {N}\), \(1\le p_{1}< \infty\), \(0<p_{2}\le \infty\), \(0<\theta _{1}\), \(\theta _{2}\le \infty\), \(w_{1}\in \Omega _{\theta _{1}}\), \(w_{2}\in \Omega _{\theta _{2}}\), \(\mu _{n,\rho , p_{1}}\) is defined by formula (4.1),

$$\begin{aligned} v_{1}(r) = w_{1}\left( \mu ^{(-1)}_{n,\rho , p_{1}}(r)\right) \big \vert \left( \mu ^{(-1)}_{n,\rho , p_{1}}(r)\right) ' \big \vert ^{\frac{1}{\theta _{1}}}, \ r>0, \end{aligned}$$
(4.9)

and \(v_{2}\) is defined by formula (4.2).

1. Let \(1<p_{1}<p_{2}< \infty\) or \(1\le p_{1}< \infty\) and \(0<p_{2}\le p_{1}\), and \(\rho \in S_{n,p_{1}, p_{2}}\). If the operator H is bounded from \(L_{\theta _{1}, v_{1}(\cdot )}(0,\infty )\) to \(L_{\theta _{2}, v_{2}(\cdot )}(0,\infty )\) on the cone \(\mathbb {A}\), that is

$$\begin{aligned} \Vert Hg\Vert _{L_{\theta _{2}, v_{2}(\cdot )}(0,\infty )}\lesssim \Vert g\Vert _{L_{\theta _{1}, v_{1}(\cdot )} (0,\infty ) } \end{aligned}$$
(4.10)

uniformly in \(g\in \mathbb {A}\), then the operator \(I_{\rho (\cdot )}\) is bounded from \(LM_{p_{1} \theta _{1},w_{1}(\cdot )}\) to \(LM_{p_{2} \theta _{2},w_{2}(\cdot )}\).

2. Let \(p_{1}=1\), \(0<p_{2}<\infty\) and \(\rho \in \tilde{S}_{n,1,p_{2}}\). Then the operator \(I_{\rho (\cdot )}\) is bounded from \(LM_{1 \theta _{1},w_{1}(\cdot )}\) to \(LM_{p_{2} \theta _{2},w_{2}(\cdot )}\) if and only if the operator H is bounded from \(L_{ \theta _{1},v_{1}(\cdot )}(0, \infty )\) to \(L_{ \theta _{2},v_{2}(\cdot )}(0, \infty )\) on the cone \(\mathbb {A}\).

3. Let \(p_{1}=1\), \(1<p_{2}<\infty\) and \(\rho \in S_{n,1,p_{2}}\). Then the operator \(I_{\rho (\cdot )}\) is bounded from \(LM_{p_{1} \theta _{1},w_{1}(\cdot )}\) to \(WLM_{p_{2} \theta _{2},w_{2}(\cdot )}\) if and only if the operator H is bounded from \(L_{ \theta _{1},v_{1}(\cdot )}(0, \infty )\) to \(L_{ \theta _{2},v_{2}(\cdot )}(0, \infty )\) on the cone \(\mathbb {A}\).

Remark 4.3

If we put \(r=\mu _{n_{1},\rho , p_{1}}(t)\) in (4.9), then, taking into account that \(\big ( \mu ^{(-1)}_{n_{1},\rho , p_{1}}(r) \big )'= \Big (\mu '_{n_{1},\rho , p_{1}}\big (\mu ^{(-1)}_{n_{1},\rho , p_{1}}(r)\big ) \Big )^{-1}\), \(r>0\), we get

$$\begin{aligned} v_{1}\big ( \mu _{n_{1},\rho , p_{1}} (t)\big ) =w_{1}(t) \left| \mu '_{n_{1},\rho , p_{1}}(t) \right| ^{-\frac{1}{\theta _{1}}}, \ t>0 \end{aligned}$$
(4.11)

and

$$\begin{aligned} v_{2}\big ( \mu _{n_{1},\rho , p_{1}}(t) \big )=w_{2}(t)t^{\frac{n}{p_{2}}}\left| \mu '_{n,\rho , p_{1}}(t) \right| ^{-\frac{1}{\theta _{1}}}, \ t>0, \end{aligned}$$
(4.12)

Lemma 4.1

Assume that \(0<p_{1}, p_{2}, \theta _{1}, \theta _{2} \le \infty\), \(w_{1}\in \Omega _{\theta _{1}}\), \(\rho\) is a positive continuous function on \((0, \infty )\) such that

$$\begin{aligned} {\int _{0}^{1}}\rho (t) t^{\frac{n}{p'_{1}}-1}dt=\infty , \ \int _{1}^{\infty }\rho (t) t^{\frac{n}{p'_{1}}-1}dt<\infty , \end{aligned}$$
(4.13)

and the functions \(\mu _{n,\rho , p_{1}}\), \(g_{n,\rho , p_{1}}\), \(v_{1}\), \(v_{2}\) are defined by formulas (4.1), (4.3), (4.9), (4.2), respectively. Then

$$\begin{aligned} \Vert g_{n,\rho , p_{1}}\Vert _{L_{\theta _{1},v_{1}(\cdot )}}= \Vert f\Vert _{LM_{p_{1}\theta _{1},w_{1}(\cdot )}} \end{aligned}$$
(4.14)

for all \(f \in LM_{p_{1}\theta _{1},w_{1}(\cdot )}\), for any measurable function \(\phi _{1}:(0,\infty )\rightarrow (0, \infty )\) and \(t>0\)

$$\begin{aligned} \Vert v_{1}\phi _{1}\Vert _{L_{\theta _{1} }(0,t)}= \Vert w_{1}(r)\phi _{1}(\mu _{n,\rho ,p_{1}}(r))\Vert _{L_{\theta _{1} }(\mu ^{(-1)}_{n,\rho ,p_{1}}(t),\infty )}, \end{aligned}$$
(4.15)
$$\begin{aligned} \Vert v_{1}\phi _{1}\Vert _{L_{\theta _{1} }(t, \infty )}= \Vert w_{1}(r)\phi _{1}(\mu _{n,\rho ,p_{1}}(r))\Vert _{L_{\theta _{1} }(0,\mu ^{(-1)}_{n,\rho ,p_{1}}(t))}, \end{aligned}$$
(4.16)
(4.16')
$$\begin{aligned} \Vert v_{1}\Vert _{L_{\theta _{1} }(0,\infty )}=\left\| w_{1}\right\| _{L_{\theta _{1}} (0,\infty )}, \end{aligned}$$
(4.17)

and for any measurable function \(\phi _{2}:(0,\infty )\rightarrow (0, \infty )\) and \(t>0\)

$$\begin{aligned} \Vert v_{2}\phi _{2}\Vert _{L_{\theta _{2} }(0,t)}= \Vert w_{2}(r)r^{\frac{n}{p_{2}}}\phi _{2}(\mu _{n,\rho ,p_{1}}(r))\Vert _{L_{\theta _{2} }(\mu ^{(-1)}_{n,\rho ,p_{1}}(t),\infty )}, \end{aligned}$$
(4.18)
$$\begin{aligned} \Vert v_{2}\phi _{2}\Vert _{L_{\theta _{2} }(t,\infty )}= \Vert w_{2}(r)r^{\frac{n}{p_{2}}}\phi _{2}(\mu _{n,\rho ,p_{1}}(r))\Vert _{L_{\theta _{2} }(0,\mu ^{(-1)}_{n,\rho ,p_{1}}(t))}, \end{aligned}$$
(4.19)
(4.19')
$$\begin{aligned} \Vert v_{2}\Vert _{L_{\theta _{2} }(0,\infty )}=\left\| w_{2}(r)r^{\frac{n}{p_{2}}}\right\| _{L_{\theta _{2}} (0,\infty )}. \end{aligned}$$
(4.20)

Proof

1. Indeed,

$$\begin{aligned} \Vert g_{n,\rho , p_{1}}\Vert _{L_{\theta _{1},v_{1}(\cdot )}}= \left\| v_{1}(t)\Vert f\Vert _{L_{p_{1}}(B(0,\mu ^{(-1)}_{n,\rho ,p_{1}}(t)))} \right\| _{L_{\theta _{1}}(0,\infty )} \end{aligned}$$
$$\begin{aligned} =\left( \mu ^{(-1)}_{n,\rho ,p_{1}}(t) =r, t=\mu _{n,\rho ,p_{1}}(r), \ {\text {by\ (4.13) }} \lim \limits _{r\rightarrow 0^{+}} \mu _{n,\rho , p_{1}}^{(-1)}(t) = \infty , \lim \limits _{n\rightarrow \infty } \mu _{n,\rho , p_{1}}^{(-1)}(t) = 0 \right) \end{aligned}$$
$$\begin{aligned} = \left\| v_{1} \left( \mu _{n,\rho ,p_{1}}(r) \right) \vert \mu '_{n,\rho ,p_{1}}(r)\vert ^{\frac{1}{\theta _{1}}} \Vert f\Vert _{L_{p_{1}}(B(0,r))}\right\| _{L_{\theta _{1}}(0,\infty )} \end{aligned}$$
$$\begin{aligned} = \left\| w_{1}(r) \Vert f\Vert _{L_{p_{1}}(B(0,r))}\right\| _{L_{\theta _{1}}(0,\infty )}= \Vert f\Vert _{LM_{p_{1}\theta _{1},w_{1}(\cdot )}}. \end{aligned}$$

(We have used equality (4.11)).

2. Note that, by (3.10) and (4.7), for \(0<\theta _{1}<\infty\), \(t>0\)

$$\begin{aligned} \Vert v_{1}\phi _{1}\Vert _{L_{\theta _{1}}(0,t)}= \left( -{\int _{0}^{t}} w_{1} \left( \mu _{n,\rho , p_{1}}^{(-1)}(s)\right) ^{\theta _{1}}\phi _{1}(s)^{\theta _{1}} \left( \mu _{n,\rho , p_{1}}^{(-1)}(s)\right) ' ds\right) ^{\frac{1}{\theta _{1}}} \end{aligned}$$
$$\begin{aligned} =\left( \mu _{n,\rho , p_{1}}^{(-1)}(s)=r\right) =\left( \int _{\mu _{n,\rho , p_{1}}^{(-1)}(t)}^{\infty }w_{1} (r)^{\theta _{1}}\phi _{1}(\mu _{n,\rho ,p_{1}}(r))^{\theta _{1}} dr\right) ^{\frac{1}{\theta _{1}}} \end{aligned}$$
$$\begin{aligned} =\Vert w_{1}(r)\phi _{1}(\mu _{n,\rho ,p_{1}}(r))\Vert _{L_{\theta _{1}}(\mu _{n,\rho , p_{1}}^{(-1)}(t),\infty )} \end{aligned}$$

and, similarly

$$\begin{aligned} \Vert v_{1}\Vert _{L_{\theta _{1}}(t,\infty )}=\Vert w_{1}(r)\phi _{1}(\mu _{n,\rho ,p_{1}}(r)) \Vert _{L_{\theta _{1}}(0,\mu _{n,\rho , p_{1}}^{(-1)}(t))}. \end{aligned}$$

These equalities also hold for \(\theta _{1}=\infty\), because, for example, by (4.9)

$$\begin{aligned} \Vert v_{1}\phi _{1}\Vert _{L_{\infty }(0,t)}= \left\| w_{1}\left( \mu _{n,\rho , p_{1}}^{(-1)} (s)\right) \phi _{1}(s)\right\| _{L_{\infty }(0,t)} \end{aligned}$$
$$=\underset{0<s<t}{ess\,sup}\vert w_1\left(\mu_{n,\rho,p_1}^{(-1)}(s)\right)\phi_1(s)\vert$$
$$\begin{aligned} =\Big (\mu _{n,\rho , p_{1}}^{(-1)} (s)= r, \mu _{n,\rho , p_{1}}^{(-1)} ((0,t))= \left( \mu ^{(-1)}_{n,\rho ,p_{1}},\infty \right) \Big ) \end{aligned}$$
$$=\underset{\mu_{n,\rho,p_1}^{(-1)}(t)<r<\infty}{\text{ess}\,\text{sup}}\;\vert w_1\left(r\right)\phi_1\left(\mu_{n,\rho,p_1}(r)\right)\vert =\Vert w_{1}(r)\phi _{1}(\mu _{n,\rho ,p_{1}}(r))\Vert _{L_{\infty }\left( \mu _{n,\rho , p_{1}}^{(-1)}(t),\infty \right) }.$$

Similarly, by (4.2), (4.7) and (4.12) for \(0<\theta _{2}\le \infty\), \(t>0\)

$$\begin{aligned} \Vert v_{2}\Vert _{L_{\theta _{2}}(0,t)}= \left\| w_{2} (r)r^{\frac{n}{p_{2}}} \right\| _{L_{\theta _{2}}\left( \mu _{n,\rho , p_{1}}^{(-1)}(t), \infty \right) }\end{aligned}$$

and

$$\begin{aligned} \Vert v_{2}\Vert _{L_{\theta _{2}}(t, \infty )}= \left\| w_{2} (r)r^{\frac{n}{p_{2}}} \right\| _{L_{\theta _{2}}\left( 0,\mu _{n,\rho , p_{1}}^{(-1)}(t)\right) }. \end{aligned}$$

The proved equalities imply equalities (4.17) and (4.20) by passing to the limit as \(t\rightarrow 0^{+}\) or \(t\rightarrow +\infty\). \(\square\)

Proof of Theorem 4.2

1. Let \(1< p_{1}< p_{2} < \infty\) or \(1 \le p_{1} < \infty\) and \(0 < p_{2} \le p_{1}\), and \(\rho \in S_{n,p_{1},p_{2}}\). Assume that the operator H is bounded from \(L_{\theta _{1},v_{1}(\cdot )}(0,\infty )\) to \(L_{\theta _{2},v_{2}(\cdot ) }(0,\infty )\) on the cone \(\mathbb {A}\). Since \(g_{n,\rho ,p_{1}}\in \mathbb {A}\), by Statement 1 of Theorem 4.1 and formula (4.14) we have

$$\begin{aligned} \left\| I_{\rho (\cdot )}f\right\| _{LM_{p_{2}\theta _{2},w_{2}(\cdot )}}\lesssim \left\| Hg_{n,\rho ,p_{1}}\right\| _{ L_{\theta _{2},v_{2}(\cdot )}(0,\infty )} \lesssim \left\| g_{n,\rho ,p_{1}}\right\| _{ L_{\theta _{1},v_{1}(\cdot )}(0,\infty )} = \Vert f\Vert _{LM_{p_{1}\theta _{1},w_{1}(\cdot )}} \ \end{aligned}$$
(4.21)

uniformly in \(f\in LM_{p_{1}\theta _{1},w_{1}(\cdot )}\), hence the operator \(I_{\rho (\cdot )}\) is bounded from \(LM_{p_{1}\theta _{1},w_{1}(\cdot )}\) to \(LM_{p_{2}\theta _{2},w_{2}(\cdot )}\).

2.1. Let \(p_{1}=1\), \(0<p_{2}<\infty\) and \(\rho \in \tilde{S}_{n,1,p_{2}}\). If the operator H is bounded from \(L_{\theta _{1},v_{1}(\cdot )(0,\infty )}\) to \(L_{\theta _{2} ,v_{2}(\cdot )}(0,\infty )\) on the cone \(\mathbb {A}\), then by Statement 2 of Theorem 4.1 as in Step 1 it follows that the operator \(I_{\rho (\cdot )}\) is bounded from \(LM_{p_{1}\theta _{1},w_{1}(\cdot )}\) to \(LM_{p_{2}\theta _{2},w_{2}(\cdot )}\).

2.2. Assume that \(I_{\rho (\cdot )}\) is bounded from \(LM_{1\theta _{1},w_{1}(\cdot )}\) to \(LM_{p_{2}\theta _{2},w_{2}(\cdot )}\). Then by Statement 2 of Theorem 4.1 and formula (4.14) with \(p_{1}=1\)

$$\begin{aligned} \left\| H_{g_{n,\rho ,1}} \right\| _{L_{\theta _{2},v_{2}(\cdot )}(0,\infty )} \approx \left\| I_{\rho (\cdot )}f\right\| _{LM_{p_{2}\theta _{2},w_{2}(\cdot )}}\lesssim \left\| f\right\| _{LM_{1\theta _{1},w_{1}(\cdot )}}= \left\| g_{n,\rho ,1}\right\| _{L_{\theta _{1},v_{1}(\cdot )}} \end{aligned}$$
(4.22)

uniformly in all non-negative functions \(f \in L_{1}^{\text {loc}} (\mathbb {R}^{n})\).

Let \(g\in \mathbb {A}\) be continuously differentiable on \((0,\infty )\). Consider the positive Lebesgue measurable function h on \((0,\infty )\) defined uniquely up to equivalence by the equality

$$\begin{aligned} g(t)= \left\| h(\vert \cdot \vert )\right\| _{L_{1}(B(0,\mu _{n,\rho ,1}^{(-1)}(t)))}=\sigma _{n} \int _{0}^{\mu _{n,\rho ,1}^{(-1)}(t)} h (\tau )\tau ^{n-1}d \tau ,\ t>0 \end{aligned}$$
$$\begin{aligned} \Leftrightarrow g'(t)= \sigma _{n}\big ( \mu _{n,\rho ,1}^{(-1)}(t) \big )' h \big ( \mu _{n,\rho ,1}^{(-1)}(t) \big )\big ( \mu _{n,\rho ,1}^{(-1)}(t) \big )^{n-1} , t>0 \end{aligned}$$
$$\begin{aligned} \Leftrightarrow h(r) =\sigma ^{-1}_{n} g'(\mu _{n,\rho ,1}(r))\mu '_{n,\rho ,1}(r)r^{1-n},r>0. \end{aligned}$$

If we take in (4.22) \(f(x)=h(|x|)\), then by (4.3) \(\Vert f\Vert _{L_{1}(B(0,\mu _{n,\rho ,1}^{(-1)}(t)))}=g(t)\) and by (4.21)

$$\begin{aligned} \Vert Hg\Vert _{L_{\theta _{2},v_{2}(\cdot )}(0, \infty )}\lesssim \Vert g\Vert _{L_{\theta _{1},v_{1}(\cdot )}} \end{aligned}$$
(4.23)

uniformly in all \(g\in \mathbb {A}\) which are continuously differentiable on \((0,\infty )\).

Finally, if g is an arbitrary function in \(\mathbb {A}\), then there exist functions \(g_{k}\in \mathbb {A}\), \(k\in \mathbb {N}\), which are continuously differentiable on \((0,\infty )\) and such \(g_{k}\le g_{k+1}\), \(k\in \mathbb {N}\), and \(\lim \limits _{k\rightarrow \infty }g_{k}=g\) on \((0,\infty )\). Therefore, by passing to the limit in (4.23), with g replaced by \(g_{k}\), as \(k \rightarrow \infty\), it follows that (4.23) holds for all \(g\in \mathbb {A}\).

3. Let \(p_{1}=1\), \(1<p_{2}<\infty\) and \(\rho \in S_{n,1,p_{2}}\). In this case the argument is similar to that of Step 2, only Statement 3 of Theorem 4.1 should be used and the space \(LM_{p_{2}\theta _{2},w_{2}(\cdot )}\) should be replaced by the space \(WLM_{p_{2}\theta _{2},w_{2}(\cdot )}\). \(\square\)

Hardy’s inequality on the cone of monotonic functions

Necessary and sufficient conditions for the boundedness of the operator H from one weighted Lebesgue space \(L_{\theta _{1},v_{1}(\cdot )}(0,\infty )\) to another one \(L_{\theta _{2},v_{2}(\cdot )}(0,\infty )\) on the cone \(\mathbb {A}\) are knows for all values of \(0<\theta _{1}\), \(\theta _{2}\le \infty\). We present below these results which are corollaries of more general statements contained in the survey by A. Gogatishvili and V.D. Stepanov [10] (Theorems 2.5, 3.15 and 3.16). See also the survey by M.L. Goldman [11].

Theorem 5.1

Let \(0<\theta _{1}\), \(\theta _{2}\le \infty\), \(v_{1}\), \(v_{2}\) be non-negative Lebesgue measurable functions on \((0,\infty )\). Then the operator H is bounded from \(L_{\theta _{1},v_{1}(\cdot )}(0,\infty )\) to \(L_{\theta _{2},v_{2}(\cdot )}(0,\infty )\) on the cone \(\mathbb {A}\) if and only if

(a) if \(1<\theta _{1}\le \theta _{2}<\infty\), then

$$\begin{aligned} A_{11}:=\sup \limits _{t>0}\left( {\int _{0}^{t}} s^{\theta _{2}} v_{2}^{\theta _{2}}(s) ds\right) ^{\frac{1}{\theta _{2}}} \left( {\int _{0}^{t}}v_{1}^{\theta _{1}}(s)ds\right) ^{-\frac{1}{\theta _{1}}} <\infty , \end{aligned}$$

and

$$\begin{aligned} A_{12} : = \sup \limits _{t>0}\Bigg (\int ^{\infty } _{t} v_{2}^{\theta _{2}}(\tau )d\tau \Bigg )^{\frac{1}{\theta _{2}}} \Bigg (\int ^{t} _{0} z^{\theta _{1}'} \Big (\int ^{z} _{0} v_{1}^{\theta _{1}}(s)ds \Big )^{-\theta _{1}'}v_{1}^{\theta _{1}}(z)dz\Bigg )^{\frac{1}{\theta _{1}'}}<\infty , \end{aligned}$$

(b) if \(0<\theta _{1}\le 1\), \(\theta _{1} \le \theta _{2} <\infty\), then

$$\begin{aligned} A_{2} : = \sup \limits _{t>0}\Bigg ({\int ^{t}_{0}} v_{1}^{\theta _{1}}(s)ds\Bigg )^{-\frac{1}{\theta _{1}}} \Bigg (\int ^{\infty }_{0} \min \{s,t\}^{\theta _{2}} v_{2}^{\theta _{2}}(s)ds \Bigg )^{\frac{1}{\theta _{2}}} <\infty , \end{aligned}$$

(c) if \(1<\theta _{1}<\infty\), \(0<\theta _{2}<\theta _{1}<\infty\), then

$$\begin{aligned} A_{31} : = \Bigg ( \int ^{\infty }_{0}\Bigg (\int ^{t} _{0} v_{1}^{\theta _{1}}(\tau )d\tau \Bigg )^{-\frac{r}{\theta _{1}}}\Bigg (\int ^{t} _{0}s^{\theta _{2}}v_{2}^{\theta _{2}}(s)ds \Bigg )^{\frac{r}{\theta _{1}}} t^{\theta _{2}}v_{2}^{\theta _{2}}(t)dt \Bigg )^{\frac{1}{r}}<\infty , \end{aligned}$$

and

$$\begin{aligned} A_{32} := \Bigg (\int ^{\infty } _{0}\Bigg (\int ^{\infty } _{t} v_{2}^{\theta _{2}} (s)ds\Bigg )^{\frac{r}{\theta _{1}}}\Bigg (\int ^{t} _{0}s^{\theta _{1}'} \Big (\int ^{s} _{0} v_{1}^{\theta _{1}} (\tau )d\tau \Big )^{-\theta _{1}'}v_{1}^{\theta _{1}}(s)ds \Bigg )^{\frac{r}{\theta _{1}'}} v_{2}^{\theta _{2}}(t)dt \Bigg )^{\frac{1}{r}}<\infty , \end{aligned}$$

where \(\frac{1}{r}=\frac{1}{\theta _{2}}-\frac{1}{\theta _{1}}\),

(d) if \(0<\theta _{2}<\theta _{1}\le 1\), then \(A_{41} := A_{31}<\infty\) and

$$\begin{aligned} A_{42}: = \Bigg (\int ^{\infty } _{0} \Bigg ( \sup \limits _{0< s\le t} s^{\theta _{1}} \Bigg ({\int ^{s}_{0}}v_{1}^{\theta _{1}}(\tau )d\tau \Bigg )^{-1} \Bigg )^{\frac{r}{\theta _{1}}} \Bigg (\int ^{\infty } _{t} v_{2}^{\theta _{2}} (z)dz \Bigg )^{^{\frac{r}{\theta _{1}}}} v_{2}^{\theta _{2}}(t)dt \Bigg )^{\frac{1}{r}}<\infty , \end{aligned}$$

(e) if \(0<\theta _{1}\le 1\), \(\theta _{2}=\infty\), then

$$\begin{aligned} A_{5} : = \sup \limits _{t>0} \Bigg ({\int ^{t}_{0}} v_{1}^{\theta _{1}}(s)ds\Bigg )^{-\frac{1}{\theta _{1}}} \Bigg (\text {ess} \sup \limits _{y >0 \ \ \ \ } \min (t,y) v_{2}(y)\Bigg ) <\infty , \end{aligned}$$

(f) if \(1<\theta _{1}<\infty\), \(\theta _{2}=\infty\), then

$$\begin{aligned} A_{6} : = \text {ess} \sup \limits _{s>0 \ \ \ \ } v_{2}(s)\Bigg ({\int ^{s}_{0}} \Bigg ({\int ^{s}_{t}}\Bigg ({\int ^{y}_{0}} v_{1}^{\theta _{1}} (z) dz\Bigg )^{-1}dy \Bigg )^{\theta '_{1}} v_{1}^{\theta _{1}}(t)dt \Bigg )^{\frac{1}{\theta _{1}'}}<\infty , \end{aligned}$$

(g) if \(\theta _{1}=\infty\), \(0<\theta _{2}<\infty\), then

$$\begin{aligned} A_{7}:=\Bigg (\int ^{\infty }_{0}\Bigg (v_{2}(x){\int ^{x}_{0}} \frac{dy}{\text {ess} \sup \limits _{0<z<y \ \ \ \ } v_{1} (z)}\Bigg )^{\theta _{2}}dx\Bigg )^{\frac{1}{\theta _{2}}} <\infty , \end{aligned}$$

(h) if \(\theta _{1}=\theta _{2}=\infty\), then

$$\begin{aligned} A_{8} : = \text {ess} \sup \limits _{x>0 \ \ \ \ } \Bigg (v_{2}(x){\int ^{x}_{0}} \frac{dy}{\text {ess} \sup \limits _{0<z<y \ \ \ \ } v_{1} (z)}\Bigg ) <\infty . \end{aligned}$$

Conditions, ensuring boundedness of the generalized Riesz potential

In order to obtain sufficient conditions and necessary and sufficient conditions for \(p_{1}=1\) on the weight functions \(w_{1}\), \(w_{2}\) ensuring the boundedness of \(I_{\rho (.)}\) from \(LM_{p_{1},\theta _{1},w_{1}(.)}\) to \(LM_{p_{2},\theta _{2},w_{2}(.)}\) for \(1<p_{1}<p_{2}<\infty\) or \(1\le p_{1}<\infty\), it, clearly, suffices to apply Theorems 4.2 and 5.1.

In order to make these conditions have a simpler form we shall carry out certain changes of variables and apply equalities (4.15)–(4.20) proved in Lemma 4.1.

Theorem 6.1

Assume that \(0<\theta _{1},\theta _{2}\le \infty , w_{1} \in \Omega _{\theta _{1}}, w_{2} \in \Omega _{ \theta _{2}}\).

1. Let \(1< p_{1}< p_{2}<\infty\) or \(1 \le p_{1}< \infty\) and \(0<p_{2}\le \infty ,\) and \(\rho \in S_{n, p_{1},p_{2}}.\) Then the operator \(I_{\rho (.)}\) is bounded from \(LM_{p_{1},{ \theta _{1}}, w_{1}(\cdot ) }\) to \(LM_{p_{2},{\theta _{2}},w_{2}(\cdot ) }\) if the following conditions are satistied.

(a) If \(1<\theta _{1}\le \theta _{2}<\infty ,\) then

$$\begin{aligned} B_{11} := \sup _{t>0}\left( \int _{t}^{\infty }w_{2,n,p_{2} }^{\theta _{2}}(x)\mu ^{\theta _{2}}_{n,\rho ,p_{1}}(x) dx\right) ^{\frac{1}{\theta _{2}}} \left( \int _{t}^{\infty } w_{1}^{\theta _{1}} (x)dx \right) ^{-\frac{1}{\theta _{1}}} < \infty , \end{aligned}$$

and

$$\begin{aligned} B_{12} := \sup _{t>0}\left( {\int _{0}^{t}}w_{2,n,p_{2} }^{\theta _{2}}(x) dx\right) ^{\frac{1}{\theta _{2}}} \left( \int _{t}^{\infty } \frac{w_{1}^{\theta _{1}} (x)\mu ^{\theta _{1}^{\prime }}_{n,\rho ,p_{1}}(x)}{(\int _{x}^{\infty }w_{1}^{\theta _{1}}(s)ds)^{\theta _{1}^{\prime }}} dx \right) ^{\frac{1}{\theta '_{1}}} < \infty . \end{aligned}$$

where \(w_{2,n,p_{2} }(x) =w_{2}(x)x^{\frac{n}{p_{2}}}\).

(b) If \(0<\theta _{1}\le 1\), \(\theta _{1}\le \theta _{2}<\infty ,\) then

$$\begin{aligned} B_{2} := \sup _{t>0} \left( \int _{t}^{\infty } w_{1}^{\theta _{1}} (x)dx \right) ^{-\frac{1}{\theta _{1}}} \left( \int _{0}^{\infty }w_{2 ,n,p_{2} }^{\theta _{2}}(x) \min \{ \mu _{n,\rho ,p_{1}}(t), \mu _{n,\rho ,p_{1}}(x) \}^{\theta _{2}} dx\right) ^{\frac{1}{\theta _{2}}} < \infty . \end{aligned}$$

(c) If \(1<\theta _{1}< \infty , 0<\theta _{2}< \theta _{1}< \infty ,\) then

$$\begin{aligned} B_{31} := \left( \int _{0}^{\infty } \left( \frac{\int _{t}^{\infty }w_{2,n,p_{2} }^{\theta _{2}}(x)\mu ^{\theta _{2}}_{n,\rho ,p_{1}}(x) dx}{\int _{t}^{\infty }w_{1}^{\theta _{1}}(x)dx} \right) ^{\frac{r}{\theta _{1}} } w_{2,n,p_{2} }^{\theta _{2}}(t)\mu ^{\theta _{2}}_{n,\rho ,p_{1}}(t) dt\right) ^{\frac{1}{r} }< \infty , \end{aligned}$$

and

$$\begin{aligned} B_{32} := \Bigg (\int \limits ^{\infty }_{0} \Bigg (\int \limits ^{\infty }_{z} w_{2 ,n,p_{2} }^{\theta _{2}} (x) dx\Bigg )^{\frac{r}{\theta _{1}} }\Bigg (\int \limits ^{\infty } _{ z}\frac{\mu ^{\theta _{1}'}_{n,\rho ,p_{1}}(\tau )w_{1}^{\theta _{1}}(\tau )}{ \Big (\int \limits ^{\infty } _{ \tau } w_{1}^{\theta _{1}} (u)du \Big )^{\theta _{1}'}}d\tau \Bigg )^{ \frac{r}{\theta '_{1}} } w_{2 ,n,p_{2} }^{\theta _{2}}(z) dz \Bigg )^{ \frac{1}{r}} <\infty , \end{aligned}$$

where \(\frac{1}{r}=\frac{1}{\theta _{2}}-\frac{1}{\theta _{1}}\).

(d) If \(0<\theta _{2}< \theta _{1}\le 1,\) then \(B_{41}: =B_{31}<\infty\) and

$$\begin{aligned} B_{42}:= \Bigg (\int \limits ^{\infty }_{0} \sup \limits _{y<z<\infty } \mu _{n,\rho ,p_{1}}(z)^{r} \Bigg (\int \limits ^{\infty }_{ z} w_{1}^{\theta _{1}}(s)ds\Bigg )^{-\frac{r}{\theta _{1}} } \Bigg (\int \limits ^{y}_{ 0} w_{2 ,n,p_{2} }^{\theta _{2}}(x) dx\Bigg )^{\frac{r}{\theta _{1}} } w_{2 ,n,p_{2} }^{\theta _{2}}(y)dy\Bigg )^{\frac{1}{r} } <\infty . \end{aligned}$$

(e) If \(0<\theta _{1}\le 1,\theta _{2}=\infty ,\) then

$$\begin{aligned} B_{5}:= \sup \limits _{ t>0 } \Bigg (\int \limits ^{\infty }_{t} w_{1}^{\theta _{1} } (x) dx\Bigg )^{-\frac{1}{\theta _{1}} } \text {ess}\sup _{x>0} w_{2,n,p_{2} } (x) \min \{ \mu _{n,\rho ,p_{_{1}}} (t), \mu _{n,\rho ,p_{_{1}}} (x) \}<\infty . \end{aligned}$$

(f) If \(1<\theta _{1}< \infty ,\theta _{2}=\infty ,\) then

$$\begin{aligned} B_{6}:= \text {ess}\sup _{z>0}w_{2 ,n,p_{2} }(z) \Bigg (\int \limits ^{\infty }_{ z}\Bigg ( \int \limits ^{ z}_{ x} \Bigg (\int \limits _{u}^{\infty } w^{\theta _{1}}_{1}(s)ds \Bigg )^{-1} \rho (u) u^{\frac{n}{p'_{1}}-1}du \Bigg )^{\theta '_{1}}w_{1}^{\theta _{1}}(x)dx\Bigg )^{ \frac{1}{\theta '_{1}}} < \infty . \end{aligned}$$

(g) If \(\theta _{1}=\infty\), \(0<\theta _{2}<\infty\), then

$$\begin{aligned} B_{7} : = \Bigg (\int ^{\infty }_{0}\Bigg ( w_{2 ,n,p_{2} } (\tau ) \int _{\tau }^{\infty }\frac{ \rho (z) z^{\frac{n}{p'_{1}}-1} dz}{\text {ess}\sup \limits _{z<s<\infty \ \ } w_{1}(s)}\Bigg )^{\theta _{2}} d \tau \Bigg )^{\frac{1}{\theta _{2}}}< \infty . \end{aligned}$$

(h) If \(\theta _{1}=\theta _{2}=\infty ,\) then

$$\begin{aligned} B_{8} : = \text {ess}\sup _{\tau >0 \ \ } \Bigg ( \int _{\tau }^{\infty }\frac{\rho (z) z^{\frac{n}{p'_{1}}-1} dz}{\text {ess}\sup \limits _{z<s<\infty \ \ } w_{1}(s)}\Bigg ) w_{2,n,p_{2} } (\tau ) < \infty . \end{aligned}$$

2. Let \(p_{1}=1, 0<p_{2}<\infty\) and \(\rho \in \tilde{S}_{n,1,p_{2}}.\) Then the operator \(I_{\rho (.)}\) is bounded from \(LM_{1,\theta _{1},w_{1}(.)}\) to \(LM_{p_{2},\theta _{2},w_{2}(.)}\) if and only if conditions (a) - (h) with \(p_{1}=1\) are satisfied.

3. Let \(p_{1}=1, 1<p_{2}<\infty\) and \(\rho \in {S}_{n,1,p_{2}}.\) Then the operator \(I_{\rho (.)}\) is bounded from \(LM_{1,\theta _{1},w_{1}(.)}\) to \(WLM_{p_{2},\theta _{2},w_{2}(.)}\) if and only if conditions (a) - (h) with \(p_{1}=1\) are satisfied.

Proof

It sufficies to prove by using Lemma 4.1 and the appropriate changes of variables that, for \(\mu _{n,\rho ,p_{1}}\), \(v_{1}\) and \(v_{2}\) defined by formulas (4.1), (4.9), (4.2), respectively, \(A_{11}=B_{11}\). \(A_{12}=B_{12}\), \(A_{2}=B_{2}\), \(A_{31}=B_{31}\), \(A_{32}=B_{32}\), \(A_{41}=B_{41}\), \(A_{5}=B_{5}\) and \(A_{6}= c B_{6}\), \(A_{7}= c B_{7}\), \(A_{8}= c B_{8}\), where \(c=\Big (\int \limits _{1}^{\infty } \rho (t)t^{\frac{n}{p'_{1}}-1}dt \Big )^{-1}\).

(a) If \(1<\theta _{1}\le \theta _{2}<\infty\), then according to Theorem 5.1 and by (4.15) with \(\phi _{1}\equiv 1\) and (4.18) with \(\phi _{2}(s)\equiv s\), we get

$$\begin{aligned} A_{11} = \sup \limits _{t>0} \Bigg (\int \limits ^{\infty }_{ \mu ^{(-1)}_{n,\rho ,p_{1}}(t) } w_{2,n,p_{2} }^{\theta _{2}}(r) \mu ^{\theta _{2}}_{n,\rho ,p_{1}}(r)dr \Bigg )^{\frac{1}{\theta _{2}}} \Bigg (\int \limits ^{\infty }_{ \mu ^{(-1)}_{n,\rho ,p_{1}}(t) } w_{1}^{\theta _{1}}(r)dr \Bigg )^{- \frac{1}{\theta _{1}}} \end{aligned}$$
$$\begin{aligned} \left( \mu ^{(-1)}_{n,\rho ,p_{1}}(t)= \tau \right) \end{aligned}$$
$$\begin{aligned} = \sup \limits _{\tau >0} \Bigg (\int \limits ^{\infty }_{ \tau } w_{2,n,p_{2} }^{\theta _{2}}(r) \mu ^{\theta _{2}}_{n,\rho ,p_{1}}(r)dr \Bigg )^{\frac{1}{\theta _{2}}} \Bigg (\int \limits ^{\infty }_{ \tau } w_{1}^{\theta _{1}}(r)dr \Bigg )^{- \frac{1}{\theta _{1}}} =B_{11 } \end{aligned}$$

and

$$\begin{aligned} A_{12} = \sup \limits _{t>0} \Bigg (\int \limits _{0}^{ \mu ^{(-1)}_{n,\rho ,p_{1}}(t) } w_{2,n,p_{2} }^{\theta _{2}}(x) dx \Bigg )^{\frac{1}{\theta _{2}}} \Bigg ({\int \limits ^{t}_{0}} z^{\theta '_{1}} \Bigg (\int \limits ^{\infty }_{ \mu ^{(-1)}_{n,\rho ,p_{1}}(z) } w_{1}^{\theta _{1}}(r)dr \Bigg )^{-\theta '_{1}} w_{1}^{\theta _{1}}(z)dz \Bigg )^{\frac{1}{\theta '_{1}}} . \end{aligned}$$

Next, by (4.16) with

$$\begin{aligned} \phi _{1}(z)=\Bigg (z^{\theta '_{1}} \Bigg (\int \limits _{\mu ^{(-1)}_{n,\rho ,p_{1}}(z)}^{\infty } w_{1}^{\theta _{1}}(r)dr \Bigg )^{ -\theta '_{1}} \Bigg ) ^{\frac{1}{\theta _{1}}}, \end{aligned}$$

we get

$$\begin{aligned} A_{12} = \sup \limits _{t>0} \Bigg (\int \limits ^{\mu ^{(-1)}_{n,\rho ,p_{1}}(t) }_{ 0 } w_{2 ,n,p_{2} }^{\theta _{2}}(x) dx \Bigg )^{\frac{1}{\theta _{2}}} \Bigg (\int \limits ^{\infty }_{ \mu ^{(-1)}_{n,\rho ,p_{1}}(t) } \mu ^{\theta _{1}'}_{n,\rho ,p_{1}}(x) \Bigg (\int \limits ^{\infty }_{ x} w_{1}^{\theta _{1}}(r)dr \Bigg )^{- \theta '_{1}} w_{1}^{\theta _{1}}(x)dx \Bigg )^{\frac{1}{\theta _{1}'}} \end{aligned}$$
$$\begin{aligned} \left( \mu ^{(-1)}_{n,\rho ,p_{1}}(t)= \tau \right) \end{aligned}$$
$$\begin{aligned} = \sup \limits _{\tau >0} \Bigg (\int \limits ^{\tau }_{ 0 } w_{2}^{\theta _{2}}(x)x^{\frac{n \theta _{2}}{p_{2} } } dx \Bigg )^{\frac{1}{\theta _{2}}} \Bigg (\int \limits ^{\infty }_{ \tau } \mu ^{\theta _{1}'}_{n,\rho ,p_{1}}(x) \Bigg (\int \limits ^{\infty }_{ x} w_{1}^{\theta _{1}}(r)dr \Bigg )^{ -\theta '_{1}} w_{1}^{\theta _{1}}(x)dx \Bigg )^{ \frac{1}{\theta _{1}'}} =B_{12} . \end{aligned}$$

(b) If \(0<\theta _{1}\le 1\), \(\theta _{1}\le \theta _{2}<\infty\), then by (4.15) with \(\phi _{1} \equiv 1\) and by (4.19′) with \(\phi _{2}(s)=\min \{t,s\}\), \(s>0\), we get

$$\begin{aligned} A_{2}=\sup \limits _{t>0} \bigg ( \int ^{\infty }_{ \mu ^{-1}_{n,\rho ,p_{1}}(t) }w_{1}^{\theta _{1}}(r)dr\bigg )^{-\frac{1}{\theta _{1}} } \bigg ( \int ^{\infty }_{0} w_{2,n,p_{2}} ^{\theta _{2}} (r ) \min \{t,\mu _{n,\rho ,p_{1}}(r) \}^{\theta _{2}} dr \bigg )^{\frac{1}{\theta _{2}}} \end{aligned}$$
$$\begin{aligned} ( \mu ^{-1}_{n,\rho ,p_{1}}(t)=\tau ) \end{aligned}$$
$$\begin{aligned} =\sup \limits _{\tau >0} \bigg ( \int ^{\infty }_{\tau }w_{1}^{\theta _{1}}(r)dr\bigg )^{-\frac{1}{\theta _{1}} } \bigg ( \int ^{\infty }_{0} w_{2,n,p_{2} }^{\theta _{2}} (r ) \min \{ \mu _{n,\rho ,p_{1}}(\tau ) ,\mu _{n,\rho ,p_{1}}(r) \}^{\theta _{2}} dr \bigg )^{\frac{1}{\theta _{2}}} = B_{2} . \end{aligned}$$

(c) If \(1<\theta _{1}<\infty\), \(0<\theta _{2}<\theta _{1}<\infty\), then by (4.15) with \(\phi _{1}\equiv 1\), (4.18) with \(\phi _{s}=s\) and by (4.19’) we get

$$\begin{aligned} A_{31} = \Bigg (\int ^{\infty }\limits _{0}\Bigg (\int \limits ^{\infty }_{\mu ^{(-1)}_{n,\rho ,p_{1}(t)}} w_{1}^{\theta _{1}}(x) dx \Bigg )^{\frac{r}{\theta _{1}} }\Bigg (\int \limits ^{\infty }_{\mu ^{(-1)}_{n,\rho ,p_{1}(t)}} w_{2,n,p_{2} }^{\theta _{2}} (x) \mu ^{\theta _{2}}_{n,\rho ,p_{1}}(x)dx \Bigg )^{\frac{r}{\theta _{1}} } t^{\theta _{2}} v_{2}^{\theta _{2}}(t) dt\Bigg )^{\frac{1}{r} } \end{aligned}$$
$$\begin{aligned} =\Bigg (\int \limits ^{\infty }_{0}\Bigg (\int \limits ^{\infty }_{z}w_{1}^{\theta _{1}}(x) dx \Bigg )^{\frac{r}{\theta _{1}} }\Bigg (\int \limits ^{\infty }_{z}w_{2,n,p_{2} }^{\theta _{2}}(x) \mu ^{\theta _{2}}_{n,\rho ,p_{1}}(x)dx\Bigg )^{\frac{r}{\theta _{1}} }\mu ^{\theta _{2}}_{n,\rho ,p_{1}}(z) w_{2,n,p_{2} }^{\theta _{2}} (z) dz\Bigg )^{\frac{1}{r} } = B_{31} \end{aligned}$$

and

$$\begin{aligned} A_{32} = \Bigg (\int \limits ^{\infty }_{0} \Bigg (\int \limits ^{ \mu ^{(-1)}_{n,\rho ,p_{1}}(t)}_{0} w_{2 ,n,p_{2} }^{\theta _{2}} (x) dx\Bigg )^{ \frac{r}{\theta _{1}} } \Bigg (\int \limits ^{t} _{0}\frac{s^{\theta _{1}'} }{ \Big (\int \limits ^{\infty } _{ \mu ^{(-1)}_{n,\rho ,p_{1}}(s) } w_{1}^{\theta _{1}} (u)du \Big )^{\theta _{1}'}}v_{1}^{\theta _{1}}(s)ds \Bigg )^{\frac{r}{\theta '_{1}} } v_{2}^{\theta _{2}} (t)dt \Bigg )^{\frac{1}{r} } \end{aligned}$$
$$\begin{aligned} = \Bigg (\int \limits ^{\infty }_{0} \Bigg (\int \limits ^{ \mu ^{(-1)}_{n,\rho ,p_{1}}(t)}_{0} w_{2,n,p_{2} }^{\theta _{2}} (x) dx\Bigg )^{\frac{r}{\theta _{1}} } \Bigg (\int \limits ^{\infty } _{ \mu ^{(-1)}_{n,\rho ,p_{1}}(t) }\frac{\mu ^{\theta _{1}'}_{n,\rho ,p_{1}}(\tau )w_{1}^{\theta _{1}}(\tau )}{ \Big (\int \limits ^{\infty } _{ \tau } w_{1}^{\theta _{1}} (u)du \Big )^{\theta _{1}'}}d\tau \Bigg )^{\frac{r}{\theta '_{1}} } v_{2}^{\theta _{2}} (t)dt \Bigg )^{\frac{1}{r} } \end{aligned}$$
$$\begin{aligned} = \Bigg (\int \limits ^{\infty }_{0} \Bigg (\int \limits ^{\infty }_{z} w_{2 ,n,p_{2} }^{\theta _{2}} (x) dx\Bigg )^{\frac{r}{\theta _{1}} }\Bigg (\int \limits ^{\infty } _{ z}\frac{\mu ^{\theta _{1}'}_{n,\rho ,p_{1}}(\tau )w_{1}^{\theta _{1}}(\tau )}{ \Big (\int \limits ^{\infty } _{ \tau } w_{1}^{\theta _{1}} (u)du \Big )^{\theta _{1}'}}d\tau \Bigg )^{\frac{r}{\theta '_{1}} } w_{2 ,n,p_{2} }^{\theta _{2}}(z) dz \Bigg )^{\frac{1}{r} }= B_{32}. \end{aligned}$$

(d) If \(0<\theta _{2}<\theta _{1}\le 1\), then by (4.15) with \(\phi _{1}\equiv 1\), by (4.19) with \(\phi _{2}\equiv 1\), we get

$$\begin{aligned} A_{41} = \Bigg (\int \limits ^{\infty }_{0}\sup \limits _{ 0<\tau <t }\tau ^{ r}\Bigg (\int \limits ^{\infty }_{\mu ^{(-1)}_{n,\rho ,p_{1}}(\tau )} w_{1}^{\theta _{1}}(u)du\Bigg )^{\frac{r}{\theta _{1}} }\Bigg (\int \limits ^{\mu ^{(-1)}_{n,\rho ,p_{1}}(t) }_{0}w_{2 ,n,p_{2} }^{\theta _{2}}(x)dx\Bigg )^{\frac{r}{\theta _{1}} } v_{2}^{\theta _{2}}(t)dt\Bigg )^{\frac{1}{r} } \end{aligned}$$
$$\begin{aligned} =\Bigg (\int \limits ^{\infty }_{0} \sup \limits _{ 0<\tau < \mu _{n,\rho ,p_{1}}(y) } \tau ^{r}\Bigg (\int \limits ^{\infty }_{\mu ^{(-1)}_{n,\rho ,p_{1}}(\tau ) } w_{1}^{\theta _{1}}(s)ds\Bigg )^{\frac{r}{\theta _{1}} }\Bigg ({\int \limits ^{y}_{0}}w_{2 ,n,p_{2} }^{\theta _{2}}(x) dx\Bigg )^{\frac{r}{\theta _{1}} } w_{2 ,n,p_{2} }^{\theta _{2}}(y)dy\Bigg )^{\frac{1}{r} }. \end{aligned}$$
$$\begin{aligned} \left( \tau =\mu ^{(-1)}_{n,\rho ,p_{1}}(z)\right) \end{aligned}$$
$$\begin{aligned} =\Bigg ( \int \limits ^{\infty }_{0} \text {ess} \sup \limits_{ y < z < \infty } \mu _{n,\rho ,p_{1}}(z)^{r} \Bigg (\int \limits ^{\infty }_{ z} w_{1}^{\theta _{1}}(s)ds\Bigg )^{ \frac{r}{\theta _{1}} } \Bigg (\int \limits ^{y}_{ 0} w_{2 ,n,p_{2} }^{\theta _{2}}(x) dx \Bigg ) ^{\frac{r}{\theta _{1}} } \mu _{n,\rho ,p_{1}}(x)^{\theta _{2}}(y)dy \Bigg )^{ \frac{1}{r} } = B_{42}.\end{aligned}$$

(e) If \(0<\theta _{1} \le 1\), \(\theta _{2}=\infty\), then by (4.15) with \(\phi _{1}\equiv 1\) and (4.19’) with \(\phi (y) =\min \{t,y\}\), \(y>0\), we get

$$\begin{aligned} A_{5} =\sup \limits _{t>0} \Bigg (\int \limits ^{\infty }_{ \mu ^{(-1)}_{n,\rho ,p_{1}}(t) }w^{\theta _{1}}_{1}(x)dx\Bigg )^{- \frac{1}{\theta _{1}}}\text {ess}\sup \limits _{x>0\ \ \ \ } w_{2 ,n,p_{2} }(x) \min \lbrace t, \mu _{n,\rho ,p_{1}}(x)\rbrace \end{aligned}$$
$$\begin{aligned} (\mu ^{(-1)}_{n,\rho ,p_{1}}(t) =\tau ) \end{aligned}$$
$$\begin{aligned} =B_{42}. =\sup \limits _{\tau>0} \Bigg (\int \limits ^{\infty }_{\tau } w^{\theta _{1}}_{1}(x)dx\Bigg )^{- \frac{1}{\theta _{1}}}\text {ess}\sup \limits _{x>0\ \ \ \ } w_{2 ,n,p_{2} }(x) \min \lbrace \mu _{n,\rho ,p_{1}}(\tau ), \mu _{n,\rho ,p_{1}}(x) \rbrace =B_{5}. \end{aligned}$$

(f) If \(1<\theta _{1}<\infty\), \(\theta _{2}=\infty\), then by (4.15) with \(\phi _{1}\equiv 1\) and by the same formula with

$$\begin{aligned} \phi _{1}(t) = \Bigg ( {\int \limits ^{s}_{t}} \Bigg (\int \limits _{\mu ^{(-1)}_{n,\rho ,p_{1}}(y) }^{\infty } w^{\theta _{1}}_{1}(s)ds\Bigg )^{-1} dy\Bigg )^{ \frac{\theta '_{1}}{\theta _{1}} } \end{aligned}$$

and, finally, by (4.19’) with \(\theta _{2}=\infty\) and

$$\begin{aligned} \phi _{2}(s) = \Bigg (\int \limits ^{\infty }_{ \mu ^{(-1)}_{n,\rho ,p_{1}}(s)} \Bigg ( \int \limits ^{s}_{ \mu _{n,\rho ,p_{1}}(r)} \Bigg (\int \limits _{\mu ^{(-1)}_{n,\rho ,p_{1}}(y) }^{\infty } w^{\theta _{1}}_{1}(s)ds\Bigg )^{-1} dy\Bigg )^{\theta '_{1}} w_{1}^{\theta _{1}} (r)dr \Bigg )^{\frac{1}{\theta _{1}'}} \end{aligned}$$

we get

$$\begin{aligned} A_{6} = \text {ess}\sup _{s>0}v_{2}(s)\Bigg ({\int \limits ^{s}_{0}}\Bigg ( {\int \limits ^{s}_{t}} \Bigg (\int \limits _{\mu ^{(-1)}_{n,\rho ,p_{1}}(y) }^{\infty } w^{\theta _{1}}_{1}(s)ds\Bigg )^{-1} dy\Bigg )^{\theta '_{1}} v_{1}^{\theta _{1}}(t)dt\Bigg )^{ \frac{1}{\theta '_{1}}} \end{aligned}$$
$$\begin{aligned} =\text {ess}\sup _{s>0}v_{2}(s)\Bigg (\int \limits ^{\infty }_{ \mu ^{(-1)}_{n,\rho ,p_{1}}(s)}\Bigg ( \int \limits ^{s}_{\mu _{n,\rho ,p_{1}}(r) }\Bigg (\int \limits _{\mu ^{(-1)}_{n,\rho ,p_{1}}(y) }^{\infty } w^{\theta _{1}}_{1}(s)ds\Bigg )^{-1} dy\Bigg )^{\theta '_{1}} w_{1}^{\theta _{1}}(r)dr\Bigg )^{ \frac{1}{\theta '_{1}}} \end{aligned}$$
$$\begin{aligned} =\text {ess}\sup _{z>0}w_{2}(z)z^{\frac{n}{p_{2}}}\Bigg (\int \limits ^{\infty }_{ z}\Bigg ( \int \limits ^{\mu _{n,\rho ,p_{1}}(z) }_{\mu _{n,\rho ,p_{1}}(r) } \Bigg (\int \limits _{\mu ^{(-1)}_{n,\rho ,p_{1}}(y) }^{\infty } w^{\theta _{1}}_{1}(s)ds \Bigg )^{-1} dy\Bigg )^{\theta '_{1}} w_{1}^{\theta _{1}}(r)dr\Bigg )^{ \frac{1}{\theta '_{1}}} \end{aligned}$$
$$\begin{aligned} (y=\mu _{n,\rho ,p_{1}}(u)) \end{aligned}$$
$$\begin{aligned} =c B_{6}, =\text {ess}\sup \limits _{z>0\ \ \ \ } w_{2 ,n,p_{2} }(z)\Bigg (\int \limits ^{\infty }_{ z}\Bigg (\int \limits ^{ z}_{ r} \Bigg (\int \limits ^{\infty }_{ u} w_{1}(s) ^{\theta _{1}} ds \Bigg )^{-1} \vert ( \mu _{n,\rho ,p_{1}} (u))'\vert du \Bigg )^{\theta '_{1}} w_{1}^{\theta _{1}}(r)dr \Bigg )^{\frac{1}{\theta '_{1}}} \end{aligned}$$

where

$$\begin{aligned} c= \Bigg (\int \limits _{1}^{\infty } \rho (t)t^{\frac{n}{p'_{1}}-1}dt \Bigg )^{-1}. \end{aligned}$$

(g) If \(\theta _{1}=\infty\), \(0<\theta _{2}<\infty\), then by using formula (4.15) with \(\phi _{1}\equiv 1\) and formula (4.19’) with \(\phi _{2}(x)={\int \limits _{0}^{x}} \ \ \ \frac{dy}{ \text {ess} \sup \limits _{r> \mu ^{(-1)}_{n,\rho ,p_{1}}(y) \ \ \ \ \ } w_{1}(r) }\) we get

$$\begin{aligned} A_{7} = \Bigg (\int \limits ^{\infty }_{0} \Bigg (v_{2}(x){\int \limits ^{x}_{0}} \ \ \frac{dy}{\text {ess} \sup \limits _{r>\mu ^{(-1)}_{n,\rho ,p_{1}}(y) \ \ \ \ \ } w_{1}(r)} \Bigg )^{\theta _{2}}dx \Bigg )^{\frac{1}{\theta _{2}}} \end{aligned}$$
$$\begin{aligned} = \Bigg (\int \limits ^{\infty }_{0} \Bigg ( w_{2,n,p_{2}}(\tau ) \int \limits ^{\mu _{n,\rho ,p_{1}} (\tau ) }_{0} \ \frac{dy}{\text {ess} \sup \limits _{r>\mu ^{(-1)}_{n,\rho ,p_{1}}(y) \ \ \ \ \ } w_{1}(r)} \Bigg )^{\theta _{2}}d\tau \Bigg )^{\frac{1}{\theta _{2}}} \end{aligned}$$
$$\begin{aligned} \left( \mu ^{(-1)}_{n,\rho ,p_{1}}(y)=z \right) \end{aligned}$$
$$\begin{aligned} = c \Bigg (\int \limits ^{\infty }_{0} \Bigg ( w_{2,n,p_{2}}(\tau ) \int \limits ^{\infty }_{\tau } \frac{ \rho (z) z^{\frac{n}{p'_{1}}-1} }{\text {ess} \sup \limits _{ z<r<\infty \ \ \ \ \ } w_{1}(r)} dz\Bigg )^{\theta _{2}}d\tau \Bigg )^{\frac{1}{\theta _{2}}}= c B_{7}. \end{aligned}$$

(h) If \(\theta _{1}=\theta _{2}=\infty\), then in \(A_{8}\) according to (4.10) and (4.2)

$$\begin{aligned} v_{1}(x)=w_{1}\Big (\mu ^{(-1)}_{n,\rho ,p_{1}}(x)\Big ),\ v_{2}(x)=w_{2}\Big (\mu ^{(-1)}_{n,\rho ,p_{1}}(x)\Big )\Big (\mu ^{(-1)}_{n,\rho ,p_{1}}(x)\Big )^{\frac{n}{p_{2}}} ,x>0. \end{aligned}$$

By using formula (4.15) with \(\psi _{1}\equiv 1\) and by carrying out the following changes of variables: \(y=\mu _{n,\rho ,p_{1}}(z)\), \(z>0\), and, finally, \(t=\mu _{n,\rho ,p_{1}}(\tau )\), \(\tau >0\), we get

$$\begin{aligned} A_{8} = \text {ess}\sup _{t>0 \ \ } \Bigg ( {\int _{0}^{t}}\frac{ dy }{\text {ess}\sup \limits _{s>\mu ^{(-1)}_{n,\rho ,p_{1}}(y)} w_{1}(s)}\Bigg ) w_{2}\Big (\mu ^{(-1)}_{n,\rho ,p_{1}}(t)\Big )\Big (\mu ^{(-1)}_{n,\rho ,p_{1}}(t)\Big )^{\frac{n}{p_{2}}} \end{aligned}$$
$$\begin{aligned} = c \ \text {ess}\sup _{t>0 \ \ } \Bigg ( \int _{\mu ^{(-1)}_{n,\rho ,p_{2}}(t)}^{\infty }\frac{\rho (z) z^{\frac{n}{p'_{1}}-1} }{\text {ess}\sup \limits _{s>z\ \ } w_{1}(s)}dz\Bigg ) w_{2}\Big (\mu ^{(-1)}_{n,\rho ,p_{2}}(t)\Big )\Big (\mu ^{(-1)}_{n,\rho ,p_{2}}(t)\Big )^{\frac{n}{p_{2}}} \end{aligned}$$
$$\begin{aligned} = c \ \text {ess}\sup _{\tau >0 \ \ } \Bigg ( \int _{\tau }^{\infty }\frac{ \rho (z) z^{\frac{n}{p'_{1}}-1} }{\text {ess}\sup \limits _{z<s<\infty \ \ } w_{1}(s)}dz\Bigg ) w_{2,n,p_{2}}(\tau ) = c B_{8}. \end{aligned}$$

\(\square\)