Skip to main content
Log in

On estimates of diameter values of classes of functions in the weight space L2,γ (ℝ2), γ = exp(–x2y2)

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

For a function fL2,γ (ℝ2), the q-averaging of the generalized m-order modulus of continuity Ωm,γ (f) with the weight function φ, i.e., the value of 𝔐qm,γ (f), φ; t) (t ∈ (0, 1); m ∈ ℕ; q ∈ (0,∞)) has been considered. With its help and with the participation of the majorant Ψ, classes of two-variable functions \( {\overset{\sim }{W}}_2\left({\Omega}_{m,\gamma}^q,\varphi; \Psi \right) \) = \( \left\{f\in {L}_{2,\gamma}\left({\mathbb{R}}^2\right):{\mathfrak{M}}_q\left({\Omega}_{m,\gamma }(f),\varphi; t\right)\leqslant \Psi (t)\forall t\in \left(0,1\right)\right\} \) were introduced, for which upper and lower estimates of various diameters in the space L2,γ (ℝ2) were found. A certain condition on the majorant Ψ was found, under which exact diameter values can be calculated. A similar problem has been considered for the classes \( {\overset{\sim }{W}}_2^{r,0}\left({\Omega}_{m,\gamma}^q,\varphi, \Psi \right) \) = \( {L}_{2,\gamma}^{r,0}\left(D,{\mathbb{R}}^2\right)\cap {\overset{\sim }{W}}_2^r\left({\Omega}_{m,\gamma}^q,\varphi, \Psi \right) \) \( \left(r,m\in \mathbb{N};q\in \left(0,\infty \right);D=-\frac{\partial^2}{{\partial x}^2}-\frac{\partial^2}{{\partial y}^2}+2x\right.\frac{\partial }{\partial x}+2y\frac{\partial }{\partial y} \) is the differential operator) consisting of functions f of class the \( {L}_{2,\gamma}^{r,0}\left(D,{\mathbb{R}}^2\right)=\left\{f\in {L}_{2,\gamma}\left({\mathbb{R}}^2\right):{c}_{i0}(f)={c}_{0j}(f)={c}_{00}(f)=0\forall i,j\in \mathbb{N}\right\} \) (here cij (f) are Fourier–Hermitian coefficients) for which the r-th iterations of Drf = D (Dr–1f) ∈ L2,γ (ℝ2) satisfy the condition \( {\mathfrak{M}}_q\left({\Omega}_{m,\gamma}\left({D}^rf\right),\varphi; t\right)\leqslant \Psi (t)\forall t\in \left(0,1\right) \). A number of results related to the specification of the exact values of various diameters are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Vakarchuk and M. B. Vakarchuk, “On the estimates of the values of various widths of classes of functions of two variables in the weight space L2,γ(ℝ2), = exp(−x2y2),” J. Math. Sci., 248 (2), 217–232 (2020).

    Article  MathSciNet  Google Scholar 

  2. S. Z. Rafalson, “On the approximation of functions on the average by Fourier–Hermite sums,” Izv. Vyssh. Ucheb. Zaved. Mat., (7), 78–84 (1968).

    MathSciNet  Google Scholar 

  3. M. K. Potapov, “On the best weighted polynomial approximation,” The theory of function approximation. In: Proceedings of the International Conference on Approximation Theory, Kyiv May 31–June 05, 1983 [in Russian], M., Nauka, pp. 362–366 (1987).

  4. G. Froyd, “On the weighted approximation by algebraic polynomials on the real axis,” Dokl. AN SSSR, 191 (2), 293–294 (1970).

    Google Scholar 

  5. V. M. Fedorov, “Approximation by algebraic polynomials with Chebyshev–Hermite weight,” Izv. Vyssh. Ucheb. Zaved. Mat., (6), 55–63 (1984).

  6. D. V. Alekseev, “Approximation by polynomials with Chebyshev–Hermite weight on the real axis,” Vestn. Mosk. Univ. Ser. 1. Mat., Mekh., 6, 68–71 (1997).

  7. V. A. Abilov and F. V. Abilova, “Some problems of the approximation of functions by Fourier–Hermite sums in the space \( {L}_2\left(\mathbb{R},{e}^{-{x}^2}\right) \),” Russian Math., 50 (1), 1–10 (2006).

  8. H. N. Mhaskar, “Weighted polynomial approximation,” J. Aprox. Theory, 46 (1), 100–110 (1986).

    Article  MathSciNet  Google Scholar 

  9. S. B. Vakarchuk and A. V. Shvachko, “On the best approximation in the mean by algebraic polynomials with weight and the exact values of widths for the classes of functions,” Ukr. Math. J., 65 (12), 1774–1792 (2014).

    Article  MathSciNet  Google Scholar 

  10. S. B. Vakarchuk, “Mean approximation of functions on the real axis by algebraic polynomials with Chebyhev – Hermite weight and widths of function classes,” Math. Notes, 95 (5–6), 599–614 (2014).

    Article  MathSciNet  Google Scholar 

  11. S. B. Vakarchuk and M. B. Vakarchuk, “On the approximation of functions by algebraic polynomials on the average on the real axis with Chebyshev–Hermite weight,” Visn. Dnipr. Univ. Ser. Mat., 19, 6/1(16), 28–31 (2011).

  12. V. A. Abilov and M. V. Abilov, “Approximation of functions in the space L2(ℝN; exp(−|x|2)),” Math. Notes, 57 (1), 3–14 (1995).

    Article  MathSciNet  Google Scholar 

  13. V. A. Abilov and F. V. Abilova, “On the convergence of multiple Fourier–Hermite series,” Comput. Math. Math. Phys., 41 (11), 1557–1577 (2001).

    MathSciNet  MATH  Google Scholar 

  14. M. G. Esmaganbetov, “Exact Jackson–Stechkin inequalities and diameters of classes of functions from \( {L}_2\left({\mathbb{R}}^2,{e}^{-{x}^2-{y}^2}\right) \),” Russian Math., 51 (2), 1–7 (2007).

  15. S. B. Vakarchuk and A. V. Shvachko, “Kolmogorov-type inequalities for derived functions of two variables with application for approximation by an angle”, Russian Math., 59 (11), 3–22 (2015).

    Article  MathSciNet  Google Scholar 

  16. S. B. Vakarchuk and M. B. Vakarchuk, “Exact Jackson-type inequalities in the weighted space L2,ρ(ℝ2)”, Visn. Dnipr. Univ. Ser. Mat., 22, 6/1(19), 17–23 (2014).

  17. O. A. Dzhurakhonov, “Some extreme problems of two-variable function approximation by Fourier–Hermite sums in the space L2,ρ(ℝ2),” Izv. AN Resp. Tadzh., 165 (4), 15–24 (2016).

    Google Scholar 

  18. N. I. Chernykh, “On the best approximation of periodic functions by trigonometric polynomials in L2,” Matem. Zamet., 2 (5), 513–522 (1967).

    MATH  Google Scholar 

  19. L. V. Taikov, “Inequalities containing the best approximations and the modulus of continuity from L2,” Matem. Zamet., 20 (3), 433–438 (1976).

    MathSciNet  MATH  Google Scholar 

  20. M. G. Esmaganbetov, “Diameters of classes from L2[0, 2π] and minimization of constants in Jackson-type inequalities,” Matem. Zamet., 65 (6), 816–820 (1999).

    Article  MathSciNet  Google Scholar 

  21. S. B. Vakarchuk and V. I. Zabutna, “A sharp inequality of Jackson–Stechkin type in L2 and the widths of functional classes,” Math. Notes, 86 (3–4), 306–313 (2009).

    Article  MathSciNet  Google Scholar 

  22. M. Sh. Shabozov and G. A. Yusupov, “Best polynomial approximations in L2 of some classes of 2π-periodic functions and exact values of their diameters,” Matem. Zamet., 90 (5), 761–772 (2011).

    Google Scholar 

  23. S. B. Vakarchuk and V. I. Zabutna, “Jackson–Stechkin type inequalities for special moduli of continuity and the widths of functional classes in the space L2,” Math. Notes, 92 (3–4), 458–472 (2012).

    Article  MathSciNet  Google Scholar 

  24. S. B. Vakarchuk, “Jackson–type inequalities with generalized modulus of contnuity and exact values of nwidths for the classes of (ψ, β)-differentiable functions in L2, II,” Ukr. Math. J., 68 (8), 1165–1183 (2017).

    Article  Google Scholar 

  25. I. P. Natanson, Theory of functions of a real variable. Dover Publications, Inc. (2016).

    Google Scholar 

  26. G. G. Hardy, D. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press (1959).

    MATH  Google Scholar 

  27. I. G. Aramovich, R. S. Guter, L. A. Lyusternik, M. I. Raukhvarger, M. I. Skanavi, and A. R. Yanpolsky, Mathematical analysis (differentiation and integration) [in Russian]. Fizmatgiz, Moscow (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergii B. Vakarchuk.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 19, No. 2, pp. 275–298, April–June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakarchuk, S.B. On estimates of diameter values of classes of functions in the weight space L2,γ (ℝ2), γ = exp(–x2y2). J Math Sci 264, 471–488 (2022). https://doi.org/10.1007/s10958-022-06012-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06012-6

Keywords

Navigation