Skip to main content
Log in

On the estimates of the values of various widths of classes of functions of two variables in the weight space L2,γ (ℝ2), γ = exp(− x2− y2)

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

For the classes of functions of two variables W2m,γ, Ψ) = {fL2,γ (ℝ2) : Ωm,γ (f, t) ⩽ Ψ(t) ∀t ∈ (0, 1)}, m ∈ ℕ, where Ωm,γ is a generalized modulus of continuity of the m-th order, and Ψ is a majorant, the upper and lower bounds for the ortho-, Kolmogorov, Bernstein, projective, Gel’fand, and linear widths in the metric of the space L2,γ (ℝ2) are found. The condition for a majorant under which it is possible to calculate the exact values of the listed extreme characteristics of the optimization content is indicated. We consider the similar problem for the classes \( {W}_2^{r,0} \)m,γ, Ψ) = \( {L}_{2,\upgamma}^{r,0} \) (D, ℝ2) ∩ \( {W}_2^r \)m,γ, Ψ), r,m ∈ ℕ, (\( D=\frac{\partial^2}{\partial {x}^2}+\frac{\partial^2}{\partial {y}^2}-2x\frac{\partial }{\partial x}-2y\frac{\partial }{\partial y} \)being the differential operator). Those classes consist of functions f\( {L}_{2,\upgamma}^{r,0} \) (ℝ2) whose Fourier–Hermite coefficients are ci0 (f) = c0j (f) = c00 (f) = 0 ∀i, j ∈ ℕ. The r-th iterations Drf = D (Dr−1f) (D0f ≡ f) belong to the space L2,γ (ℝ2) and satisfy the inequality Ωm,γ (Drf, t) ⩽ Ψ(t) ∀t ∈ (0, 1). On the indicated classes, we have determined the upper bounds (including the exact ones) for the Fourier–Hermite coefficients. The exact results obtained are specified, and a number of comments regarding them are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Z. Rafal’son, “On the approximation of functions on the average by Fourier–Hermite sums,” Izv. Vyssh. Ucheb. Zaved. Mat., No. 7, 78-84 (1968).

    MATH  Google Scholar 

  2. G. Freud, “On the approximation with weight by algebraic polynomials on the real axis,” Dokl. AN SSSR, 191(2), 293-294 (1970).

    Google Scholar 

  3. V. A. Abilov, “On the order of approximation of continuous functions by the arithmetic means of partial sums of a Fourier–Hermite series,” Izv. Vyssh. Ucheb. Zaved. Mat., No. 3, 3-9 (1972).

    MathSciNet  MATH  Google Scholar 

  4. V. M. Fedorov, “The approximation by algebraic polynomials with Chebyshev–Hermite weight,” Izv. Vyssh. Ucheb. Zaved. Mat., No. 6, 55-63 (1984).

    MathSciNet  MATH  Google Scholar 

  5. D. V. Alekseev, “The approximation by polynomials with Chebyshev–Hermite weight on the real axis,” Vestn. Mosk. Univ. Ser. 1. Mat., Mekh., No. 6, 68-71(1997).

  6. H. N. Mhaskar, “Weighted polynomial approximation,” J. Approx. Theory, 46(1), 100-110 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  7. Z. Ditzian and V. Totik, “K-functionals and best polynomial approximation in weighted space Lp(ℝ),” J. Approx. Theory, 46(1), 38-41 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. A. Abilov and F. V. Abilova, “Some problems of the approximation of functions by Fourier–Hermite sums in the space L2(ℝ, e–x2),” Russian Math., 50(1), 1–10 (2006).

    MathSciNet  MATH  Google Scholar 

  9. S. B. Vakarchuk and A. V. Shvachko, “On the best approximation in the mean by algebraic polynomials with weight and the exact values of widths for the classes of functions,” Ukr. Math. J., 65(12), 1774-1792 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. B. Vakarchuk and M. B. Vakarchuk, “On the approximation of functions by algebraic polynomials on the average on the real axis with Chebyshev–Hermite weight,” Visn. Dnipr. Univ. Ser. Mat., 19, 6/1(16), 28-31 (2011).

  11. S. B. Vakarchuk, “Mean approximation of functions on the real axis by algebraic polynomials with Chebyhev–Hermite weight and widths of function classes,” Math. Notes, 95(5-6), 599-614 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. A. Abilov and F. V. Abilova, “Approximation of functions in the space L2(ℝN; exp(−|x|2)),” Math. Notes, 57(1), 3-14 (1995).

    Article  MathSciNet  Google Scholar 

  13. V. A. Abilov and F. V. Abilova, “On the convergence of multiple Fourier–Hermite series,” Comput. Math. Math. Phys., 41(11), 1557-1577 (2001).

    MathSciNet  MATH  Google Scholar 

  14. M. G. Esmaganbetov, “Exact Jackson–Stechkin inequalities and diameters of classes of functions from L2(\( {R}^2,{e}^{-{x}^2-{y}^2} \)),” Russian Math., 51(2), 1-7 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. B. Vakarchuk and M. B. Vakarchuk, “Exact Jackson-type inequalities in the weighted space L2,(ℝ2),” Visn. Dnipr. Univ. Ser. Mat., 22, 6/1(19), 17-23 (2014).

  16. S. B. Vakarchuk and A. V. Shvachko, “Kolmogorov-type inequalities for derived functions of two variables with application for approximation by an “angle”,” Russian Math., 59(11), 3-22 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  17. O. A. Dzhurakhonov, “Some extreme problems of approximation of functions of two variables by Fourier–Hermite sums in the space L2, (ℝ2),” Izv. AN Resp. Tadzh., 165(4), 15-24 (2016).

  18. M. K. Potapov, “On the interconnection of the generalized moduli of smoothness of differentiable functions with their best approximations by algebraic polynomials,” Vestn. Mosk. Univ. Ser. 1. Mat., Mekh., No. 6, 10-17 (2005).

  19. M. K. Potapov and F. M. Berisha, “On the connection between the best approximations by algebraic polynomials and the r-th generalized modulus of smoothness,” Sovr. Mat. Fundam. Naprav., 25, 149-164 (2005).

    Google Scholar 

  20. J. Boman and H. S. Shapiro, “Comparison theorems for a generalized modulus of continuity,” Ark. Math., 9(1), 91-116 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. N. Vasil’ev, “Sharp Jackson–Stechkin inequality in L2 with the modulus of continuity generated by an arbitrary finite-difference operator with constant coefficients,” Doklady Math., 66(1), 5-8 (2002).

    MATH  Google Scholar 

  22. A. G. Babenko, “On the Jackson–Stechkin inequality for the best L2-approximations of functions by trigonometric polynomials,” Trudy IMM UrO RAN, 7(1), 30-46 (2001).

    Google Scholar 

  23. A. I. Kozko and A. V. Rozhdestvenskii, “On Jackson’s inequality for generalized modulus of continuity in L2,” Sborn. Math., 195(8), 1073-1115 (2004).

    Article  Google Scholar 

  24. K. V. Runovski, “A direct theorem of approximation theory for a general modulus of smoothness,” Math. Notes, 95(6), 833-842 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. B. Vakarchuk, “Generalized smoothness sharacteristics in Jackson-type inequalities and widths of classes of functions in L2,” Math. Notes, 98(4), 572-588 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. S. B. Vakarchuk, “Jackson-type inequalities with generalized modulus of continuity and exact values of the n-widths for the classes of (ψ, β)-differentiable functions in L2. I,” Ukr. Math. J., 68(6), 823-848 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  27. S. B. Vakarchuk, “Jackson-type inequalities with generalized modulus of continuity and exact values of the n-widths for the classes of (ψ, β)-differentiable functions in L2. II,” Ukr. Math. J., 68(8), 1165-1183 (2017).

    Article  MATH  Google Scholar 

  28. S. B. Vakarchuk, “Widths of some classes of functions defined by the generalized moduli of continuity 𝜔γ in the space L2,” J. Math. Sci., 227(1), 105-115 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  29. S. N. Vasil’ev, “The Jackson inequality in L2(ℝN) with generalized modulus of continuity,” Trudy IMM UrO RAN, 16(4), 93-99 (2010).

    Google Scholar 

  30. S. Yu. Artamonov, “Nonperiodic modulus of smoothness corresponding to the Riesz derivative,” Math. Notes, 99(6), 928-931 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  31. S. B. Vakarchuk, “On some extreme problems of approximation theory of functions on the real axis. I,” J. Math. Sci., 188(2), 146-166 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  32. S. B. Vakarchuk, “On some extreme problems of approximation theory of functions on the real axis. II,” J. Math. Sci., 190(4), 613-630 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. B. Vakarchuk, “Generalized characteristics of smoothness and some extreme problems of the approximation theory of functions in the space L2(ℝ). I,” Ukr. Math. J., 70(9), 1345-1374 (2019).

    Article  MATH  Google Scholar 

  34. S. B. Vakarchuk, “Generalized characteristics of smoothness and some extreme problems of the approximation theory of functions in the space L2(ℝ). II,” Ukr. Math. J., 70(10), 1550-1584 (2019).

    Article  MATH  Google Scholar 

  35. S. B. Vakarchuk, “On estimates in L2(ℝ) of mean ν-widths of classes of functions defined via the generalized modulus of continuity of ω,” Math. Notes, 106(2), 191-202 (2019).

    Article  MathSciNet  Google Scholar 

  36. V. M. Tikhomirov, Some Questions of the Theory of Approximations [in Russian], Moscow Univ., Moscow, 1974.

  37. A. S. Romanyuk, Approximative Characteristics of Classes of Periodic Functions of Many Variables [in Russian], Institute of Mathematics of the NASU, Kiev, 2012.

  38. H. Lebesgue, “Sur la representation trigonometrique approchee des fonctions satisfaisant a une condition de Lipschitz,” Bull. Soc. Math. France, 38, 184-210 (1910).

    Article  MathSciNet  MATH  Google Scholar 

  39. V. A. Abilov, “On the coefficients of a Fourier–Hermite series of continuous functions,” Izv. Vyssh. Ucheb. Zaved. Mat., No. 12, 3-8 (1969).

    MathSciNet  Google Scholar 

  40. B. A. Khalilova, “On Fourier–Jacobi coefficients and the approximation of functions by ultraspherical polynomials,” Izv. AN Azerb. SSR. Ser. Fiz.-Tekh. Mat. Nauk, No. 2, 87-94 (1973).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey B. Vakarchuk.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 17, No. 1, pp. 94–102 January–March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakarchuk, S.B., Vakarchuk, M.B. On the estimates of the values of various widths of classes of functions of two variables in the weight space L2,γ (ℝ2), γ = exp(− x2− y2). J Math Sci 248, 217–232 (2020). https://doi.org/10.1007/s10958-020-04871-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04871-5

Keywords

Navigation