Skip to main content
Log in

An Approach to Generating Extremely Multistable Chaotic Systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we propose new approaches to the construction of extremely multistable systems containing one-, two-, and three-dimensional lattices of identical hidden chaotic attractors possessing the same Lyapunov exponents. In particular, we prove that for multidimensional models of automatic control systems in the Lurie form, it is always possible to pass from an interactive system to a cascade system; this substantially simplifies the procedure for constructing multidimensional lattices of identical chaotic attractors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. T. Arecchi, R. Meucci, G. Puccioni, and J. Tredicce, “Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser,” Phys. Rev. Lett., 49, No. 17, 12–17 (1982).

    Article  Google Scholar 

  2. B. Bao, Q. Li, N. Wang, and Q. Xu, “Multistability in Chua’s circuit with two stable node-foci,” Chaos, 26(4), 043111 (2016).

    Article  MathSciNet  Google Scholar 

  3. I. M. Burkin, “Hidden attractors of some multistable systems with infinite number of equilibrium states,” Chebyshev. Sb., 18, No. 4, 127–138 (2017).

    Article  MathSciNet  Google Scholar 

  4. I. M. Burkin and N. K Nguen, “Analytical-numerical methods of finding hidden oscillations in multidimensional dynamical systems,” Differ. Equations, No. 50, 1695–1717 (2014).

  5. V. O. Bragin, V. I. Vagaitsev, N. V. Kuznetsov, and G. A. Leonov, “Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits,” J. Comput. Syst. Sci. Int., 50, No. 4, 511–543 (2011).

    Article  MathSciNet  Google Scholar 

  6. S. Cicek, A. Ferikoglu, and I. Pehlivan, “A new 3D chaotic system: dynamical analysis, electronic circuit design, active control synchronization and chaotic masking communication application,” Optik, No. 127, 4024–4030 (2016).

  7. D. Dudkowskia, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, and G. A. Leonov, “Hidden attractors in dynamical systems,” Phys. Rep., No. 637, 1–50 (2016).

  8. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev., 71 (5), 053809 (2005).

    Article  Google Scholar 

  9. N. V. Kuznetsov, “Hidden attractors in fundamental problems and engineering models. A short survey,” Lect. Notes Electr. Eng., No. 371, 13–25 (2016).

  10. Q. Lai and S. Chen, “Research on a new 3-D autonomous chaotic system with coexisting attractors,” Optik, No. 127, 3000–3004 (2016).

  11. Q. Lai and S. Chen, “Generating multiple chaotic attractors from Sprott B system,” Int. J. Bifurc. Chaos, 26, 21650177 (2016).

    Article  MathSciNet  Google Scholar 

  12. M. Laurent and N. Kellershohn, “Multistability: a major means of differentiation and evolution in biological systems,” Trends Biochem. Sci., 24 (11), 418–422 (1999).

    Article  Google Scholar 

  13. G. A. Leonov, Control Theory, St. Petersburg (2006).

  14. G. A. Leonov, I. M. Burkin, and A. I. Shepeljavyi, Frequency Methods in Oscillation Theory, Kluwer, Amsterdam (1996).

    Book  Google Scholar 

  15. G. A. Leonov, N. V. Kuznetsov, and V. I. Vagaitsev, “Localization of hidden Chua’s attractors,” Phys. Lett., No. 375, 2230–2233 (2011).

  16. C. Li, W. Hu, J. C. Sprott, and X. Wang, “Multistability in symmetric chaotic systems,” Eur. Phys. J. Spec. Top., No. 224, 1493–1506 (2015).

  17. C. Li and J. C. Sprott, “Multistability in the Lorenz system: a broken buttery,” Int. J. Bifurc. Chaos., 24 (10), 1450131 (2014).

    Article  Google Scholar 

  18. C. Li, J. C. Sprott,W. Hu, and Y. Xu, “Infinite multistability in a self-reproducing chaotic system,” Int. J. Bifurc. Chaos., 27 (10), 1750160 (2017).

    Article  MathSciNet  Google Scholar 

  19. C. Li, J. C. Sprott, T. Kapitaniak, and T. Lu, “Infinite lattice of hyperchaotic strange attractors,” Chaos Solitons Fract., No. 109, 76–82 (2018).

  20. C. Li, J. C. Sprott, and Y. Mei, “An invite 2-D lattice of strange attractors,” Nonlin. Dynam., 89, No. 4, 2629–2639 (2017).

    Article  Google Scholar 

  21. Z. Li and D. Xu, “A secure communication scheme using projective chaos synchronization,” Chaos Solitons Fract., No. 22, 477–481 (2004).

  22. H. Liu, A. Kadi, and Y. Li, “Audio encryption scheme by confusion and diffusion based on multiscroll chaotic system and one-time keys,” Optik, No. 127, 7431–7438 (2016).

  23. S. R. Ujjwal, N. Punetha, R. Ramaswamy, M. Agrawal, and A. Prasad, “Driving-induced multistability in coupled chaotic oscillators: symmetries and riddled basins,” Chaos, 26, 063111 (2016).

    Article  MathSciNet  Google Scholar 

  24. G. Wang, D. Chen, J. Lin, and X. Chen, “The application of chaotic oscillators to weak signal detection,” IEEE Trans. Ind. Electron., No. 46, 440–444 (1999).

  25. Q. Xu, Y. Lin, B. Bao, and M. Chen, “Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit,” Chaos Solitons Fract., No. 83, 186–200 (2016).

  26. L. Ying, D. Huang, and Y. C. Lai, “Multistability, chaos, and random signal generation in semiconductor superlattices,” Phys. Rev. E, 93 (6), 062204 (2016).

    Article  MathSciNet  Google Scholar 

  27. Z. Zeng, T. Huang, and W. Zheng, “Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function,” IEEE Trans. Neural Networks, No. 21 (8), 1371–1377 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Burkin.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 168, Proceedings of the International Conference “Geometric Methods in the Control Theory and Mathematical Physics” Dedicated to the 70th Anniversary of Prof. S. L. Atanasyan, 70th Anniversary of Prof. I. S. Krasil’shchik, 70th Anniversary of Prof. A. V. Samokhin, and 80th Anniversary of Prof. V. T. Fomenko. Ryazan State University named for S. Yesenin, Ryazan, September 25–28, 2018. Part I, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkin, I.M., Kuznetsova, O.I. An Approach to Generating Extremely Multistable Chaotic Systems. J Math Sci 262, 779–789 (2022). https://doi.org/10.1007/s10958-022-05856-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-05856-2

Keywords and phrases

AMS Subject Classification

Navigation