Skip to main content
Log in

Stability of Systems Composed of the Shells of Revolution with Variable Gaussian Curvature

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We analyze the stability of elastic systems composed of the shells of revolution with variable curvature and complex structures in the field of conservative axisymmetric loads of different nature. Within the framework of classical and refined theories of shells, we determine the limit and bifurcation critical values of the acting loads based on the geometrically nonlinear statement of the problem and a criterion of dynamic stability. To solve the corresponding nonlinear and eigenvalue problems, we propose to use a numerical-analytic approach based on their rational reduction to one-dimensional linear boundaryvalue problems in the meridional coordinate and their numerical solution by the discrete-orthogonalization method. We present test examples that confirm the applicability of the proposed procedure to the analyzed class of problems. The limit and bifurcation values of the critical loads in the shell system are analyzed depending on its geometric parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Bespalova and N. P. Boreiko, “Determination of the natural frequencies of compound anisotropic shell systems using various deformation models,” Prikl. Mekh., 55, No. 1, 44–59 (2019); English translation: Int. Appl. Mech., 55, No. 1, 41–54 (2019); https://doi.org/10.1007/s10778-019-00932-8.

  2. E. I. Bespalova and N. P. Yaremchenko, “Stability of systems composed of shells of revolution,” Prikl. Mekh., 53, No. 5, 74–86 (2017); English translation: Int. Appl. Mech., 53, No. 5, 545–555 (2017); https://doi.org/10.1007/s10778-017-0835-1.

  3. O. I. Bespalova and N. P. Yaremchenko, “Determination of the stress-strain state of conjugated flexible shells of revolution under subcritical loads,” Visn. Kyiv. Nats. Univ. im. T. Shevchenko, Ser. Fiz.-Mat. Nauky, Issue 4, 29–36 (2017).

    MATH  Google Scholar 

  4. G. A. Vanin, N. P. Semenyuk, and R. F. Emel’yanov, Stability of Shells Made of Reinforced Materials [in Russian], Naukova Dumka, Kiev (1978).

  5. A. S. Vol’mir, Stability of Deformed Systems [in Russian], Nauka, Moscow (1967).

  6. Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar’, “On the numerical solution of nonlinear boundaryvalue problems of the statics of flexible shells,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 6, 44–48 (1980).

  7. Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar’, Free Vibrations of the Elements of Shell Structures [in Russian], Naukova Dumka, Kiev (1986).

  8. Y. M. Grigorenko and L. S. Rozhok, “Analysis of the stress state of hollow cylinders with concave corrugated cross sections,” Mat. Metody Fiz.-Mekh. Polya, 58, No. 4, 70–77 (2015); English translation: J. Math. Sci., 228, No. 1, 80–89 (2018).

  9. A. N. Guz’, I. Yu. Babich, and D. V. Babich, Stability of Structural Elements, in: A. N. Guz’ (editor), Mechanics of Composites [in Russian], Vol. 10, “A. S. K.,” Kiev (2001).

  10. A. N. Guz’ and Ya. Ya. Rushchitskii, Introduction to the Mechanics of Nanocomposites [in Russian], Institute of Mechanics, Kiev (2010).

  11. E. Kamke, Differentialgleichungen. Losungsmethoden und Losungen. Teil I: Gewohnliche Differentialgleichungen, Leipzig (1959).

  12. L. V. Kurpa and T. V. Shmatko, “Investigation of free vibrations and stability of functionally graded three-layer plates by using the R-functions theory and variational methods,” Mat. Metody Fiz.-Mekh. Polya, 61, No. 1, 155–172 (2018); English translation: J. Math. Sci., 249, No. 3, 496–520 (2020).

  13. Kh. M. Mushtari and K. Z. Galimov, Nonlinear Theory of Elastic Shells [in Russian], Tatizdat, Kazan’ (1951).

    Google Scholar 

  14. V. V. Novozhilov, Theory of Thin Shells [in Russian], Sudostroenie, Leningrad (1962).

    Google Scholar 

  15. N. P. Semenyuk, “Stability of double-walled carbon nanotubes revisited,” Prikl. Mekh., 52, No. 1, 108–116 (2016); English translation: Int. Appl. Mech., 52, No. 1, 73–81 (2016).

  16. H. Al-Qablan, “Semi-analytical bucking analysis of stiffened sandwich plates,” J. Appl. Sci., 10, No. 23, 2978–2988 (2010); DOI: https://doi.org/10.3923/jas.2010.2978.2988.

    Article  Google Scholar 

  17. A. Bagchi, J. Humar, and A. Noman, “Development of a finite element system for vibration based damage identification in structures,” J. Appl. Sci., 7, No. 17, 2404–2413 (2007); DOI: https://doi.org/10.3923/jas.2007.2404.2413.

    Article  Google Scholar 

  18. R. E. Bellman and R. E. Kalaba, Quasilinearization and Non-Linear Boundary-Value Problems, Amer. Elsevier, New York (1965).

    MATH  Google Scholar 

  19. S. A. Bochkarev and V. P. Matveenko, “Natural vibrations and stability of shells of revolution interacting with an internal fluid flow,” J. Sound Vibrat., 330, No. 13, 3084–3101 (2011); https://doi.org/10.1016/j.jsv.2011.01.029.

    Article  Google Scholar 

  20. B. Budiansky, “Theory of buckling and post-buckling behavior of elastic structures,” Adv. Appl. Mech., 14, 1–65 (1974); https://doi.org/10.1016/S0065-2156(08)70030-9.

    Article  Google Scholar 

  21. D. Bushnell, “Buckling of shells-pitfall for designers,” AIAA Journal, 19, No. 9, 1183–1226 (1981).

    Article  Google Scholar 

  22. D. Bushnell, Computerized Buckling Analysis of Shells, Martinus Nijhoff Publ., the Netherlands (1985).

  23. L. Chen and J. M. Rotter, “Buckling of anchored cylindrical shells of uniform thickness under wind load,” Eng. Struct., No. 41, 199–208 (2012); https://doi.org/10.1016/j.engstruct.2012.03.046.

    Article  Google Scholar 

  24. A. Ghorbanpour, “Critical temperature of short cylindrical shells based on improved stability equation,” J. Appl. Sci., 2, No. 4, 448–452 (2002).

    Article  Google Scholar 

  25. Ya. Grigorenko, E. Bespalova, and N. Yaremchenko, “Some stationary deformation problems for compound shells of revolution,” Visn. Nats. Tekh. Univ. “Kharkiv Politekh. Inst.,” No. 26 (1198), 114–117 (2016).

  26. Ya. Grigorenko, E. Bespalova, and N. Yaremchenko, “Compound shell systems: statics, stability and vibrations,” in: Shell Structures, Proc. 11th Internat. Conf. “Shell Structures: Theory and Applications” (SSTA 2017) (October 11–13, 2017, Gdansk, Poland), pp. 289–292.

  27. W. Jiang, Z. B. Wang, J. M. Gong, and G. C. Li, “A new connection structure between hydrogen nozzle and sphere head in a hydrofining reactor,” Trans. ASME, J. Pressure Vessel Technol., 133, No. 1, 1–6 (2011); https://doi.org/10.1115/1.4002258.

    Article  Google Scholar 

  28. W. T. Koiter, “Elastic stability and post-buckling behavior,” in: Proc. Symp. on Nonlinear Problems, Univ. of Wisconsin, Madison (1963), pp. 257–275.

  29. J. Mackerle, “Finite element analysis of fastening and joining: A bibliography (1990–2002)”, Int. J. Press. Ves. Pip., 80, No. 4, 253–271 (2003); https://doi.org/10.1016/S0308-0161(03)00030-9.

    Article  Google Scholar 

  30. N. I. Obodan, A. G. Lebedeyev, and V. A. Gromov, Nonlinear Behaviour and Stability of Thin-Walled Shells, Springer, Dordrecht (2013).

    Book  Google Scholar 

  31. W. Pietraszkiewicz and V. Konopińska, “Junctions in shell structures: A review,” Thin-Walled Struct., 95, 310–334 (2015).

    Article  Google Scholar 

  32. C. Polat, “Geometrically nonlinear behavior of axisymmetric thin spherical shells,” Math. Model. Appl., 2, No. 6, 57–62 (2017).

    Google Scholar 

  33. M. S. Qatu, E. Asadi, and W. Wang, “Review of recent literature on static analyses of composite shells: 2000–2010,” Open J. Compos. Mater., 2, No. 3, 61–86 (2012); DOI: https://doi.org/10.4236/ojcm.2012.23009

    Article  Google Scholar 

  34. G. G. Sheng and X. Wang, “Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells,” Appl. Math. Model., 34, No. 9, 2630–2643 (2010).

    Article  MathSciNet  Google Scholar 

  35. P. T. Smith, C. T. F. Ross, and A. P. F. Little, “Composite tubing collapse under uniform external hydrostatic pressure,” in: Proc. of the 13th Internat. Conf. Comput. Civil Build. Eng. (ICCCBE 2010), Nottingham Univ. Press (2010), pp. 1–7.

  36. A. M. I. Sweedan and A. A. El Damaty, “Simplified procedure for design of liquid-storage combined conical tanks,” Thin-Walled Struct., 47, No. 6–7, 750–759 (2009).

    Article  Google Scholar 

  37. S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, McGraw Hill, New York (1961).

    Google Scholar 

  38. J. G. Teng and J. M. Rotter, Buckling of Thin Metal Shells, Spon Press, Taylor & Francis Group, London (2004), Chap. 13, pp. 369–408.

  39. B. Valerga de Greco and P. A. A. Laura, “Vibration and buckling of circular plates of variable thickness,” J. Acoust. Soc. Amer., 72, No. 3, 856–858 (1982).

    Article  Google Scholar 

  40. C. M. Wang, Y. Y. Zhang, Y. Xiang, and J. N. Reddy, “Recent studies on buckling of carbon nanotubes,” Trans. ASME, Appl. Mech. Rev., 63, No. 3, 030804, 1–18 (2010); https://doi.org/10.1115/1.4001936.

  41. W. Xue and Q. Zhang, “Influential parameter and experimental research on compressive bearing capacity of welded hollow spherical joints connected with circular steel tubes,” in: Proc. ICTAS, Oct. 2009, Tongji Univ. Press, Shanghai, Pt. I, pp. 405–413.

  42. K. Yamazaki and N. Tsubosaka, “A stress analysis technique for plate and shell built-up structures with junctions and its application to minimum weight design of stiffened structures,” Struct. Optimization, 14, No. 2-3, 173–183 (1997); https://doi.org/10.1007/BF01812520.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Boreiko.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 62, No. 1, pp. 127–142, January–March, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorenko, Y.М., Bespalova, О.І. & Boreiko, N.P. Stability of Systems Composed of the Shells of Revolution with Variable Gaussian Curvature. J Math Sci 258, 527–544 (2021). https://doi.org/10.1007/s10958-021-05564-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05564-3

Keywords

Navigation