Skip to main content
Log in

Stability of Systems Composed of Shells of Revolution

  • Published:
International Applied Mechanics Aims and scope

A unified numerical-analytical technique for determining bifurcation and limiting critical values of axisymmetric loads in systems composed of coaxial shells of revolution with different geometry and structure is proposed. The technique is based on the nonlinear formulation of the problem, static stability criterion, and rational reduction of the problem to linear one-dimensional problems for the meridional variable. This allows continuous description of the variation of geometric and stiffness characteristics of shells in this direction. The technique was tested against a number of numerical examples related to the stability of compound shells with elements of different Gaussian curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ya. Amiro, O. A. Grachev, V. A. Zarutskii, et al., Stability of Ribbed Shells of Revolution [in Russian], Naukova Dumka, Kyiv (1987).

  2. G. A. Vanin, N. P. Semenyuk, and R. F. Emel’yanov, Stability of Shells Made of Reinforced Materials [in Russian], Naukova Dumka, Kyiv (1978).

    Google Scholar 

  3. A. S. Vol’mir, Stability of Deformable Systems [in Russian], Nauka, Moscow (1967).

  4. Ya. M. Grigotenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar’, Free Vibrations of Elements of Shell Structures [in Russian], Naukova Dumka, Kyiv (1986).

  5. A. N. Guz, Stability of Elastic Bodies at Finite Strains [in Russian], Naukova Dumka, Kyiv (1973).

    Google Scholar 

  6. A. N. Guz, I. Yu. Babich, and D. V. Babich, Stability of Structural Members, Vol. 10 of the twelve-volume series Mechanics of Composites [in Russian], A.S.K., Kyiv (2001).

  7. A. N. Guz and J. J. Rushchitsky, Introduction to the Mechanics of Nanocomposites [in Russian], S. P. Timoshenko Institute of Mechanics NAN of Ukraine, Kyiv (2010).

  8. E. Kamke, Handbook on Ordinary Differential Equations [in Russian], Nauka, Moscow (1965).

  9. M. S. Kornishin, Nonlinear Problems of the Theory of Plates and Shallow Shells and Methods of Their Solving [in Russian], Nauka, Moscow (1964).

  10. I. A. Birger and Ya. G. Panovko (eds.), Strength, Stability, Vibrations, Vol. 3 of the three-volume handbook [in Russian], Mashinostroenie, Moscow (1988).

  11. I. I. Al-Qablan, “Semi-analytical buckling analysis of stiffened sandwich plates,” J. Appl. Sci., No. 10, 2978–2988 (2010).

  12. A. Bagchi, “Linear and nonlinear buckling of thin shells of revolution,” Trends in Appl. Sci. Res., No. 7 (3), 196–209 (2012).

  13. A. Bagchi, J. Humar, and A. Noman, “Development of a finite element system for vibration based on damage identification in structures,” J. Appl. Sci., No. 7, 2404-2413 (2007).

  14. R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier, New York (1965).

  15. S. A. Bochkarev and V. P. Matveenko, “Natural vibrations and stability of shells of revolution interacting with an internal fluid flow,” J. Sound Vibr., No. 330, 3084–3101 (2011).

  16. D. Bushnell, Computerized Buckling Analysis of Shells, Martinus Nijhoff Publishers, Amsterdam (1985).

    Book  Google Scholar 

  17. L. Chen and J. M. Rotter, “Buckling of anchored cylindrical shells of uniform thickness under wind load,” Eng. Struct., No. 41, 199–208 (2012).

  18. L. Collatz, Quasilinearization Eigenwertaufgaben mit Technischen Anwendungen. 2, Durchgesehene Auflage, Akademische Verlagsgesellschaft Geest & Portig K., Leipzig (1963).

  19. I. F. P. Correiaa, J. I. Barbosa, C. M. M. Soares, and C. A. M. Soares, “A finite element semi-analytical model for laminated axisymmetric shells: statics, dynamics and buckling,” Computers&Structures, 76, No. 1–3, 299–317 (2000).

  20. O. El-Kafrawy and A. Bagchi, “Computer-aided design and analysis of reinforced concrete frame buildings for seismic forces,” Inform. Technol. J., No. 6, 798–808 (2007).

  21. A. Ghorbanpour, “Critical temperature of short cylindrical shells based on improved stability equation,” J. Appl. Sci., No. 2, 448–452 (2002).

  22. P. Jasion, “Stability analysis of shells of revolution under pressure conditions,” Thin-Walled Struct., No. 47, 311–317 (2009).

  23. N. I. Obodan, A. G. Lebedev, and V. A. Gromov, Nonlinear Behavior and Stability of Thin-Walled Shells, Springer, Heidelberg (2013).

    Book  Google Scholar 

  24. M. S. Qatu, E. Asadi, and W. Wang, “Review of recent literature on static analysis of composite shells: 2000–2010,” Open J. Comp. Mater., No. 2, 61–86 (2012).

  25. N. P. Semenyuk, “To stability of two-layered carbon nanotubes,” Int. Appl. Mech., 52, No. 1, 73–81 (2016).

    Article  ADS  Google Scholar 

  26. N. P. Semenyuk, V. M. Trach, and N. B. Zhukova, “The theory of stability of cylindrical shells revised,” Int. Appl. Mech., 51, No. 4, 449–460 (2015).

    Article  ADS  MATH  Google Scholar 

  27. N. P. Semenyuk and N. B. Zhukova, “On stability and post-buckling behavior of orthotropic cylindrical shells with local deflections,” Int. Appl. Mech., 52, No. 3, 290–300 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. G. G. Sheng and X. Wang, “Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells,” Appl. Math. Modell., No. 34, 2630–2643 (2010).

  29. C. M. Wang, Y. Y. Zhang, Y. Xiang, and J. N. Reddy, “Recent studies on buckling of carbon nanotubes,” Appl. Mech. Rev., 63, No. 3, 1–18 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Bespalova.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 53, No. 5, pp. 74–86, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespalova, E.I., Yaremchenko, N.P. Stability of Systems Composed of Shells of Revolution. Int Appl Mech 53, 545–555 (2017). https://doi.org/10.1007/s10778-017-0835-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-017-0835-1

Keywords

Navigation