Skip to main content
Log in

Trapping of Waves in Semiinfinite Kirchhoff Plate with Periodically Damaged Edge

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study analogues of the Rayleigh waves in a semiinfinite Kirchhoff plate with periodic edges (the Neumann problem for the biharmonic operator) and in an infinite plate with a periodic family of foreign inclusions. In the first case, we prove the existence of localized waves (exponentially decaying in the perpendicular direction) for any edge profile. In the second case, we obtain a sufficient condition for trapping of waves. We explain why the results obtained for the biharmonic operator are different from the known results for the Helmholtz equation. In the case of threshold resonance, we construct asymptotic expansions of eigenvalues of the model problem, which generate analogues of the Stoneley waves. For a plate with a periodic family of cracks perpendicular to the straight boundary of the half-plane, we detect periodic localized Floquet waves that do not transfer energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  2. M. Sh. Birman, “On variational Trefftz method for the equation Δ2u = f” [in Russian], Dokl. AN SSSR 101, No. 2, 201–204 (1955).

    MathSciNet  Google Scholar 

  3. S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Am. Math. Soc., Providence, RI (1991).

    MATH  Google Scholar 

  4. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York etc. (1985).

    Book  Google Scholar 

  5. M. S. Birman and M. Z. Solomyak, Spectral Theory and SelfAdjoint Operators in Hilbert Space, Reidel, Dordrecht (1987).

    Book  Google Scholar 

  6. J. W.S. Rayleigh, “On waves propagated along the plane surface of an elastic solid” . London M. S. Proc. 17, 4–11 (1885).

    Article  MathSciNet  Google Scholar 

  7. H. Lamb, “On waves in an elastic plate,” London R. S. Proc (A) 93, 114–128 (1917).

    MATH  Google Scholar 

  8. R. Stoneley, “Elastic waves at the surface of separation of two solids,” Proc. R. S. London (A) 106, 416–428 (1925).

    MATH  Google Scholar 

  9. I. A. Viktorov, Sound Surface Waves in Solid Bodies [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  10. J. D. Kaplunov, L. Y. Kossovich, and E. V. Nolde, Dynamics of Thin Walled Elastic Bodies, Academic Press, San Diego CA (1997).

    MATH  Google Scholar 

  11. G. I. Mikhasev and P. E. Tovstik, Localized Oscillations and Waves in Thin Shells. Asymptotic Methods [in Russian], Nauka, Moscow (2009).

  12. V. M. Babich and A. P. Kisilev, Elastic Waves: High Frequency Theory, CRC Press, Boca Raton, FL (2018).

    Book  Google Scholar 

  13. Yu. K. Konenkov, “On the Rayleigh-type flexural wave” [in Russian], Akust. Zh. 6, No. 1, 124–126 (1960).

    MathSciNet  Google Scholar 

  14. I. V. Kamotskii and S. A. Nazarov, “Elastic waves localized near periodic families of defects,” Dokl. Phys. 44, No. 10, 715–717 (1999).

    MathSciNet  MATH  Google Scholar 

  15. J.-Y. Kim and S. I. Rokhlin, “Surface acoustic wave measurements of small fatigue cracks initiated from a surface cavity,” Int. J. Solids Struct. 39, No. 6, 1487–1504 (2002).

    Article  Google Scholar 

  16. D. D. Zakharov and W. Becker, “Rayleigh type bending waves in anisotropic media,” J. Sound Vib. 261, No. 5, 805–818 (2003).

    Article  MathSciNet  Google Scholar 

  17. I. V. Kamotskii and A. P. Kisilev, “An energy approach to the proof of the existences of Rayleigh waves in an anisotropic elastic half-space,” J. Appl. Math. Mech. 73, No. 4, 464–470 (2009)

    Article  MathSciNet  Google Scholar 

  18. A. A. Krushynska, “Flexural edge waves in semi-infinite elastic plates,” J. Sound Vib. 330, No. 9, 1964–1976 (2011).

    Article  Google Scholar 

  19. J. Lawrie and J. Kaplunov, “Edge waves and resonance on elastic structures: an overview,” Math. Mech. Solids 17, No. 1, 4–16 (2012).

    Article  MathSciNet  Google Scholar 

  20. I. V. Kamotskii and S. A. Nazarov, “Exponentially decreasing solutions of diffraction problems on a rigid periodic boundary,” Math. Notes 73, No. 1, 129–131 (2003).

    Article  MathSciNet  Google Scholar 

  21. S. G. Matveenko, “Decaying solutions to the diffraction problem on a semiinfinite thin Kirchhoff plate with periodic traction-free-edge,” J. Math. Sci., New York 255, No. 4, 467– 472 (2021).

  22. S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary value problems and the algebraic description of their attributes,” Russ. Math. Surv. 54, No. 5, 947–1014 (1999).

    Article  Google Scholar 

  23. M. S. Agranovich and M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type,” Russ. Math. Surv. 19, No. 3, 53–157 (1964).

    Article  MathSciNet  Google Scholar 

  24. V. A. Kondrat’ev, “Boundary value problems for elliptic equations in domains with conical and angular points” [in Russian], Tr. Mosk. Mat. O-va 16, 219–292 (1963).

    Google Scholar 

  25. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin etc. (1994).

    Book  Google Scholar 

  26. S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides,” Izv. Math. 84, No. 6, 1105–1160 (2020).

    Article  MathSciNet  Google Scholar 

  27. S. A. Nazarov, “Waves trapped by semi-infinite Kirchhoff plate at ultra-low frequencies,” Mech. Solids 55, No. 8, 1328–1339 (2020).

    Article  Google Scholar 

  28. S. Molchanov and B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics,” Commun. Math. Phys. 273, No. 2, 533–559 (2007).

    Article  MathSciNet  Google Scholar 

  29. K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions,” J. Math. Anal. Appl. 449, No. 1, 907–925 (2017).

    Article  MathSciNet  Google Scholar 

  30. F. L. Bakharev and S. A. Nazarov, “Criteria of presence and absence of bounded solutions at the threshold of the continuous spectrum in union of quantum waveguides,” [in Russian], Algebra Anal. 32, No. 6, 1–23 (2020).

  31. S. A. Nazarov, “Infinite Kirchhoff plate on a compact elastic foundation may have an arbitrarily small eigenvalue,” Dokl. Math. 100, No. 2, 491–495 (2019).

    Article  Google Scholar 

  32. F. L. Bakharev and S. A. Nazarov, “Eigenvalue asymptotics of long Kirchhoff plates with clamped edges,” Sb. Math. 210, No. 4, 473–494 (2019).

    Article  MathSciNet  Google Scholar 

  33. S. A. Nazarov, “The asymptotics of natural oscillations of a long two-dimensional Kirchhoff plate with variable cross-section,” Sb. Math. 209, No. 9, 1287–1336 (2018).

    Article  MathSciNet  Google Scholar 

  34. G. Cardone, T. Durante, and S. A. Nazarov, “The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends;;, SIAM J. Math. Anal. 42, No. 6, 2581–2609 (2010).

  35. S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold,” Sib. Math. J. 51, No. 5, 866–878 (2010).

    Article  MathSciNet  Google Scholar 

  36. V. Chiad´o Piat, S. A. Nazarov, J. Taskinen, “Embedded eigenvalues for water-waves in a three-dimensional channel with a thin screen,” Q. J. Mech. Appl. Math. 71, No. 2, 187–220 (2018).

  37. M. Van-Dyke, Perturbation Methods in Fluid Mechanics, Acad. Press, New York etc. (1964).

    MATH  Google Scholar 

  38. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Am. Math. Soc., Providence, RI (1992).

    Book  Google Scholar 

  39. V. Maz’ya, S. Nazarov, and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vols. 1, 2, Birkh¨auser, Basel (2000).

  40. S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide,” Theor. Math. Phys. 167, No. 2, 606–627 (2011).

    Article  MathSciNet  Google Scholar 

  41. S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide,” Funct. Anal. Appl. 47, No. 3, 195-209 (2013).

    Article  MathSciNet  Google Scholar 

  42. V. G. Maz’ya and B. A. Plamenevskii, “On the coefficients in the asymptotics of the solution of elliptic boundary-value problems in domains with conical points” Am. Math. Soc. Transl. Ser. 2 123, 57–88 (1984).

    Google Scholar 

  43. D. V. Evans, M. Levitin, and D. Vasil’ev, “Existence theorems for trapped modes,” J. Fluid Mech. 261, 21–31 (1994).

    Article  MathSciNet  Google Scholar 

  44. S. A. Nazarov, “Trapped modes in a cylindrical elastic waveguide with a damping gasket,” Comput. Math. Math. Phys. 48, No. 5, 816–833 (2008).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

Translated from Problemy Matematicheskogo Analiza 111, 2021, pp. 119-136.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A. Trapping of Waves in Semiinfinite Kirchhoff Plate with Periodically Damaged Edge. J Math Sci 257, 684–704 (2021). https://doi.org/10.1007/s10958-021-05510-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05510-3

Navigation