Skip to main content
Log in

Quantum Hamiltonian Eigenstates for a Free Transverse Field

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

It is demonstrated that within the framework of the second quantization, the quantum Hamiltonian operator for a free transverse field reveals an alternative set of states satisfying the eigenstate functional equations. The construction is based on extensions of the quadratic form of the transverse Laplace operator, which are used as a source of spherical basis functions with singularity at the origin. This basis naturally replaces the basis of plane or spherical waves, which is used to separate variables with the help of the Fourier transform or transition to spherical coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac, “Quantum theory of emission and absorption of radiation,” Proc. Royal Soc. London A, 114, 243 (1927).

    MATH  Google Scholar 

  2. C. M. Becchi, “Second quantization,” https://doi.org/10.4249/scholarpedia.7902, http://www.scholarpedia.org/article/Second quantization.

  3. F. A. Berezin and L. D. Faddeev, “A Remark on Schrodinger’s equation with a singular potential,” Sov. Math. Dokl., 2, 372 (1961).

    MATH  Google Scholar 

  4. R. Jackiw, “Delta function potentials in two-dimensional and three-dimensional quantum mechanics,” in: R. Jackiw, Diverse Topics in Theoretical and Mathematical Physics (1991), pp. 35–53.

  5. L. D. Faddeev, “Mass in Quantum Yang–Mills Theory (comment on a Clay millenium problem),” Bull. Brazil. Math. Soc., 33, No. 2, 201–212 (2002).

    Article  MathSciNet  Google Scholar 

  6. L. D. Faddeev, “Notes on divergences and dimensional transmutation in Yang-Mills theory,” Theor. Math. Phys., 148, 986 (2006).

    Article  Google Scholar 

  7. R. D. Richtmyer, Principles of Advanced Mathematical Physics, Springer-Verlag, New York–Heildelberg–Berlin (1978).

    Book  Google Scholar 

  8. L. D. Faddeev and A. A. Slavnov, “Gauge Fields. Introduction To Quantum Theory,” Front. Phys., 50, No. 1 (1980).

  9. K. Friedrichs, “Spektraltheorie halbbeschr¨ankter Operatoren,” Math. Ann., 109, 465–487 (1934).

    Article  MathSciNet  Google Scholar 

  10. M. Reed and B. Simon, Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-adjointness, Academic Press (1975).

  11. M. Reed and B. Simon, Methods of Modern Mathematical Physics. 1. Functional Analysis, Academic Press, New York–London (1972).

  12. T. A. Bolokhov, “Properties of the l=1 radial part of the Laplace operator in a special scalar product”, J. Math. Sci., 215, 560–573 (2016).

    Article  MathSciNet  Google Scholar 

  13. B. F. Schutz, Geometrical Methods of Mathematical Physics, Cambridge University Press (1982).

  14. T. A. Bolokhov, “Extensions of the quadratic form of the transverse Laplace operator”, J. Math. Sci., 213, 671–693 (2016).

    Article  MathSciNet  Google Scholar 

  15. T. A. Bolokhov, “The Scalar products of the regular analytic vectors of the Laplace operator in the solenoidal subspace,” J. Math. Sci., 242, 642–650 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Bolokhov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 487, 2019, pp. 78–99.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolokhov, T.A. Quantum Hamiltonian Eigenstates for a Free Transverse Field. J Math Sci 257, 476–490 (2021). https://doi.org/10.1007/s10958-021-05496-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05496-y

Navigation