Skip to main content
Log in

Renormalization Group in the Problem of Active Scalar Advection

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The field theoretic renormalization group (RG) is applied to a near-equilibrium fluid model associated with a scalar field (like temperature or density of an impurity) that is active, that is, affects the dynamics of the fluid itself. It is shown that the only possible nontrivial infrared asymptotic regimes are governed by “passive” fixed points of the RG equations, where the back reaction is irrelevant. This result resembles the result obtained by Nandy and Bhattacharjee (1998) in a model describing active convection by fully developed turbulence. Furthermore, the existence of “exotic” fixed points with negative and complex effective couplings and transport coefficients that may suggest possible directions for future studies is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Forster, D. R. Nelson, and M. J. Stephen, “Large-distance and long-time properties of a randomly stirred fluid,” Phys. Rev., 16, 732 (1977).

    Article  MathSciNet  Google Scholar 

  2. D. Forster, D. R. Nelson, and M. J. Stephen, “Long-time tails and the large-eddy behavior of a randomly stirred fluid,” Phys. Rev. Lett., 36, 867 (1976).

    Article  Google Scholar 

  3. M. Kardar, G. Parisi, and Y.-C. Zhang, “Dynamic Scaling of Growing Interfaces,” Phys. Rev. Lett., 56, 889 (1986).

    Article  Google Scholar 

  4. S. Grossmann and E. Schnedler, “Fluctuation corrections of the turbulence spectrum by renormalization group methods,” Z. Phys., 26, 307–317 (1977).

    Google Scholar 

  5. P. C. Martin and C. De Dominicis, “The long distance behavior of randomly stirred fluids,” Progr. Theor. Phys. Suppl., 64, 108–123 (1978).

    Article  Google Scholar 

  6. C. De Dominicis and P. C. Martin, “Energy spectra of certain randomly stirred fluid,” Phys. Rev. A, 19, 419 (1979).

    Article  Google Scholar 

  7. P. L. Sulem, J.-D. Fournier, and A. Pouquet, “Fully developed turbulence and renormalization group,” in: Lecture Notes in Physics, 104, Springer, Berlin (1979), pp. 320–335.

  8. T. Nakano and F. Tanaka, “Effects of large-scale fluctuations in fully developed turbulence,” Progr. Theor. Phys., 65, 120–139 (1981).

    Article  Google Scholar 

  9. J.-D. Fournier, P.L. Sulem, and A. Pouquet, “Infrared properties of forced magnetohydrodynamic turbulence,” J. Phys. A: Math. Gen., 15, 1393–1420 (1982).

    Article  Google Scholar 

  10. J.-D. Fournier and U. Frisch, “Remarks on renormalization group in statistical fluid dynamics,” Phys. Rev. A, 28, 1000–1002 (1983).

    Article  Google Scholar 

  11. L. Ts. Adzhemyan, A. N. Vasil’ev, and Yu. M. Pis’mak, “Renormalization-group approach in the theory of turbulence: The dimensions of composite operators,” Theor. Math. Phys., 57, 1131–1141 (1983).

  12. L. Canet, B. Delamotte, and N. Wschebor, “Fully developed isotropic turbulence: Symmetries and exact identities,” Phys. Rev. E, 91, 053004 (2015); “Fully developed isotropic turbulence: Nonperturbative renormalization group formalism and fixed-point solution,” Phys. Rev. E, 93, 063101 (2016).

  13. C. Mejía-Monasterio and P. Muratore Ginanneschi, “Nonperturbative renormalization group study of the stochastic Navier-Stokes equation,” Phys. Rev. E, 86, 016315 (2012).

    Article  Google Scholar 

  14. A. A. Fedorenko, P. Le Doussal, and K. J. Wiese, “Functional renormalization-group approach to decaying turbulence,” J. Stat. Mech., P04014 (2013).

  15. S. L. Ogarkov, “On functional and holographic renormalization group methods in stochastic theory of turbulence,” arXiv:1605.07560[hep-th] (2016).

  16. M. Tarpin, L. Canet, C. Pagani, and N. Wschebor, “Stationary, isotropic and homogeneous two-dimensional turbulence: a first non-perturbative renormalization group approach, arXiv:1809.00909[cond-mat.stat-mech] (2018).

  17. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, The Field Theoretic Renormalization Group in Fully Developed Turbulence, Gordon and Breach, London (1999).

  18. A. N. Vasiliev, The Field Theoretic Renormalization Group in Critical Behaviour Theory and Stochastic Dynamics, Chapman & Hall/CRC, Boca Raton (2004).

    Google Scholar 

  19. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, “Quantum field renormalization group in the theory of fully developed turbulence,” Physics-Uspekhi, 39, No. 12, 1193–1219 (1996).

    Article  Google Scholar 

  20. N. V. Antonov, “Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection,” J. Phys. A: Math. Gen., 39, 7825 (2006).

    Article  MathSciNet  Google Scholar 

  21. M. Hnatič, J. Honkonen, and T. Lučivjanský, “Advanced field-theoretical methods in stochastic dynamics and theory of developed turbulence,” Acta Phys. Slovaca, 66, No. 2, 69–264 (2016).

    Google Scholar 

  22. S. A. Orszag, “Statistical theory of turbulence in fluids dynamics,” in: Fluid Dynamics, Gordon and Breach, London (1977), pp. 235–373.

  23. A. N. Vasiliev, Functional Methods in Quantum Field Theory and Statistical Physics, CRC Press (1998).

  24. H. W. Wyld, Jr., “Formulation of the theory of turbulence in an incompressible fluid,” Ann. Phys., 14, 143–165 (1961).

    Article  MathSciNet  Google Scholar 

  25. V. I. Belinicher and V. S. L’vov, “Scale-invariant theory of developed hydrodynamic turbulence,” Sov. Phys. JETP, 66, 303 (1987); V. S. L’vov, “Scale invariant-theory of fully-developed hydrodynamic turbulence,” Phys. Rep., 207, 1 (1991).

  26. V. S. L’vov and I. Procaccia, “Towards a nonperturbative theory of hydrodynamic turbulence: Fusion rules, exact bridge relations, and anomalous viscous scaling functions,” Phys. Rev. E, 54, 6268 (1996).

    Article  Google Scholar 

  27. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge (1995).

    Book  Google Scholar 

  28. R. H. Kraichnan, “Small-scale structure of a scalar field convected by turbulence,” Phys. Fluids, 11, 945–953 (1968); “Anomalous scaling of a randomly advected passive scalar,” Phys. Rev. Lett., 72, 1016 (1994); “Passive scalar: scaling exponents and realizability,” Phys. Rev. Lett, 78, 4922 (1997).

  29. G. Falkovich, K. Gawȩdzki, and M. Vergassola, “Particles and fields in fluid turbulence,” Rev. Mod. Phys., 73, 913 (2001).

    Article  MathSciNet  Google Scholar 

  30. M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, “Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive Scalar,” Phys. Rev. E, 52, 4924 (1995); M. Chertkov and G. Falkovich, “Anomalous scaling exponents of a white-advected passive scalar,” Phys. Rev. Lett., 76, 2706 (1996).

  31. K. Gawedzki and A. Kupiainen, “Anomalous scaling of the passive scalar,” Phys. Rev. Lett., 75, 3834 (1995); D. Bernard, K. Gawedzki, and A. Kupiainen, “Anomalous scaling in the N-point functions of passive Scalar,” Phys. Rev. E, 54, 2564 (1996).

  32. U. Frisch, A. Mazzino, and M. Vergassola, “Intermittency in passive scalar advection,” Phys. Rev. Lett., 80, 5532 (1998); U. Frisch, A. Mazzino, A. Noullez, and M. Vergassola, “Lagrangian method for multiple correlations in passive scalar advection,” Phys. Fluids, 11, 2178 (1999); A. Mazzino and P. Muratore Ginanneschi, “Passive scalar turbulence in high dimensions,” Phys. Rev. E, 63, 015302 (2000).

  33. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, “Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar,” Phys. Rev. E, 58, 1823 (1998).

  34. D. J. Amit, Field Theory, Renormalization Group, and Critical Phenomena, 2nd ed., World Scientific, Singapore (1984).

    Google Scholar 

  35. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford (1989).

    MATH  Google Scholar 

  36. L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, and A. N. Vasil’ev, “Anomalous exponents in the rapid-change model of the passive scalar advection in the order ε3,” Phys. Rev. E 63, 025303(R) (2001); “Calculation of the anomalous exponents in the rapid-change model of passive scalar advection to order ε3,” Phys. Rev. E, 64, 056306 (2001).

  37. L. Ts. Adzhemyan, N. V. Antonov, and J. Honkonen, “Anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: Two-loop approximation,” Phys. Rev. E, 66, 036313 (2002).

  38. L. Tes. Adzhemyan, N. V. Antonov, J. Honkonen, and T. L. Kim, “Anomalous scaling of a passive scalar advected by the Navier–Stokes velocity field: Two-loop approximation,” Phys. Rev. E, 71, 016303 (2005).

    Article  MathSciNet  Google Scholar 

  39. R. Ruiz and D. R. Nelson, “Turbulence in binary fluid mixtures,” Phys. Rev. A, 23, 3224 (1981).

    Article  Google Scholar 

  40. A. Aronowitz and D. R. Nelson, “Turbulence in phase-separating binary mixtures,” Phys. Rev. A, 29, 2012 (1984).

    Article  Google Scholar 

  41. M. K. Nandy and J. K. Bhattacharjee, “Renormalization-group analysis for the infrared properties of a randomly stirred binary fluid,” J. Phys. A: Math. Gen., 31, 2621–2637 (1998).

    Article  Google Scholar 

  42. A. Celani, M. Cencini, A. Mazzino, and M. Vergassola, “Active versus passive scalar turbulence,” Phys. Rev. Lett., 89, 234502 (2002).

    Article  Google Scholar 

  43. A. Celani, M. Cencini, A. Mazzino, and M. Vergassola, “Active and passive fields face to face,” New J. Phys., 6, 72 (2004).

    Article  Google Scholar 

  44. A. Celani and M. Vergassola, “Statistical geometry in scalar turbulence,” Phys. Rev. Lett., 86, 424 (2001).

    Article  Google Scholar 

  45. I. Arad, L. Biferale, A. Celani, I. Procaccia, and M. Vergassola, “Statistical conservation laws in turbulent transport,” Phys. Rev. Lett., 87, 164502 (2001).

    Article  Google Scholar 

  46. E. S. C. Ching, Y. Cohen, T. Gilbert, and I. Procaccia, “Active and passive fields in turbulent transport: The role of statistically preserved structures,” Phys. Rev. E, 67, 016304 (2003).

    Article  MathSciNet  Google Scholar 

  47. A. Kupiainen and P. Muratore-Ginanneschi, “Scaling, renormalization and statistical conservation laws in the Kraichnan model of turbulent advection,” J. Stat. Phys., 126, 669–724 (2007).

    Article  MathSciNet  Google Scholar 

  48. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, “Infrared divergences and the renormalization group in the theory of fully developed turbulence,” Sov. Phys. JETP, 68, 733–742 (1989).

    Google Scholar 

  49. P. C. Hohenberg and B. I. Halperin, “Theory of dynamic critical phenomena,” Rev. Mod. Phys., 49, 435 (1977).

    Article  Google Scholar 

  50. R. Folk and G. Moser, “Critical dynamics: a field-theoretical approach,” J. Phys. A: Math. Gen., 39, 207–313 (2006).

    Article  MathSciNet  Google Scholar 

  51. N. V. Antonov and P. I. Kakin, “Random interface growth in random environment: Renormalization group analysis of a simple model,” Theor. Math. Phys., 185, 1391–1407 (2015).

    Article  MathSciNet  Google Scholar 

  52. N. V. Antonov and M. M. Kostenko, “Anomalous scaling of passive scalar fields advected by the Navier–Stokes velocity ensemble: Effects of strong compressibility and large-scale anisotropy,” Phys. Rev. E, 90, 063016 (2014).

    Article  Google Scholar 

  53. V. Yakhot, “Ultraviolet dynamic renormalization group: Small-scale properties of a randomly stirred fluid,” Phys. Rev. A, 23, 1486–1497 (1981); V. Yakhot, “Large-scale properties of unstable systems governed by the Kuramoto–Sivashinksi equation,” Phys. Rev. A, 24, 642–644 (1981); G. Sivashinsky and V. Yakhot, “Negative viscosity effect in large-scale flows,” Phys. Fluids, 28, 1040–1042 (1985).

  54. G. Pelletier, “Langmuir turbulence as a critical phenomenon. Part 2. Application of the dynamical renormalization group method,” J. Plasma Phys., 24, 421–443 (1980).

    Article  Google Scholar 

  55. L. Ts. Adzhemyan, A. N. Vasil’ev, M. Gnatich, and Yu. M. Pis’mak, “Quantum field renormalization group in the theory of stochastic Langmuir turbulence,” Theor. Math. Phys., 78, 260–272 (1989).

    Article  MathSciNet  Google Scholar 

  56. U. C. Täuber and S. Diehl, “Perturbative field-theoretical renormalization group approach to driven-dissipative Bose-Einstein criticality,” Phys. Rev. X, 4, 021010 (2014); Weigang Liu and U. C. T¨auber, “Critical initial-slip scaling for the noisy complex Ginzburg–Landau equation,” J. Phys. A: Math. Theor., 49, 434001 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Antonov.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 487, 2019, pp. 5–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, N.V., Kostenko, M.M. Renormalization Group in the Problem of Active Scalar Advection. J Math Sci 257, 425–441 (2021). https://doi.org/10.1007/s10958-021-05492-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05492-2

Navigation