Skip to main content
Log in

Partial Preservation of Frequencies and Floquet Exponents of Invariant Tori in the Reversible KAM Context 2

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We consider the persistence of smooth families of invariant tori in the reversible context 2 of KAM theory under various weak nondegeneracy conditions via Herman’s method. The reversible KAM context 2 refers to the situation where the dimension of the fixed point manifold of the reversing involution is less than half the codimension of the invariant torus in question. The nondegeneracy conditions we employ ensure the preservation of any prescribed subsets of the frequencies of the unperturbed tori and of their Floquet exponents (the eigenvalues of the coefficient matrix of the variational equation along the torus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, Berlin (2006).

    Book  MATH  Google Scholar 

  2. G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York (1972).

    MATH  Google Scholar 

  3. G. E. Bredon, Introduction to Compact Transformation Groups [Russian translation], Nauka, Moscow (1980).

  4. H. W. Broer, M. C. Ciocci, H. Hansmann, and A. Vanderbauwhede, “Quasi-periodic stability of normally resonant tori,” Physica D, 238, No. 3, 309–318 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. W. Broer, J. Hoo, and V. Naudot, “Normal linear stability of quasi-periodic tori,” J. Differ. Equ., 232, No. 2, 355–418 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  6. H. W. Broer and G. B. Huitema, “Unfoldings of quasi-periodic tori in reversible systems,” J. Dynam. Differ. Equ., 7, No. 1, 191–212 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  7. H. W. Broer, G. B. Huitema, and M. B. Sevryuk, “Families of quasi-periodic motions in dynamical systems depending on parameters,” In: Nonlinear Dynamical Systems and Chaos, Birkhäuser, Basel (1996), pp. 171–211.

    MATH  Google Scholar 

  8. H. W. Broer, G. B. Huitema, and M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems. Order amidst Chaos, Springer, Berlin (1996).

    MATH  Google Scholar 

  9. H. W. Broer, G. B. Huitema, and F. Takens, “Unfoldings of quasi-periodic tori,” Mem. Am. Math. Soc., 83, No. 421, 1–81 (1990).

    MathSciNet  MATH  Google Scholar 

  10. H. W. Broer and M. B. Sevryuk “KAM theory: Quasi-periodicity in dynamical systems,” In: Handbook of Dynamical Systems, Vol. 3, Elsevier, Amsterdam (2010), pp. 249–344.

  11. R. C. Calleja, A. Celletti, and R. de la Llave, “Domains of analyticity and Lindstedt expansions of KAM tori in some dissipative perturbations of Hamiltonian systems,” Nonlinearity, 30, No. 8, 3151–3202 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  12. S.-N. Chow, Y. Li, and Y. Yi, “Persistence of invariant tori on submanifolds in Hamiltonian systems,” J. Nonlinear Sci., 12, No. 6, 585–617 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. E. Conner and E. E. Floyd, Differentiable Periodic Maps, Academic Press, New York; Springer, Berlin (1964).

    Book  Google Scholar 

  14. P. E. Conner and E. E. Floyd, Smooth Periodic Mappings [Russian translation], Mir, Moscow (1969).

  15. R. De la Llave, “A tutorial on KAM theory,” Proc. Symp. Pure Math., 69, 175–292 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. De la Llave, A Tutorial on KAM Theory [Russian translation], In-t Komp. Issl., Moscow–Izhevsk (2003).

  17. H. S. Dumas, The KAM Story. A Friendly Introduction to the Content, History, and Significance of Classical Kolmogorov–Arnold–Moser Theory, World Scientific, Hackensack (2014).

    Book  MATH  Google Scholar 

  18. A. González-Enríquez, Haro À., and R. de la Llave, “Singularity theory for non-twist KAM tori,” Mem. Am. Math. Soc., 227, No. 1067, 1–115 (2014).

  19. H. Hansmann, “Non-degeneracy conditions in KAM theory,” Indag. Math. (N. S.), 22, No. 3-4, 241–256 (2011).

  20. Haro À., M. Canadell, J.-L. Figueras, A. Luque, and J.-M. Mondelo, The Parameterization Method for Invariant Manifolds. From Rigorous Results to Effective Computations, Springer, Cham (2016).

  21. I. Hoveijn, “Versal deformations and normal forms for reversible and Hamiltonian linear systems,” J. Differ. Equ., 126, No. 2, 408–442 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Kong and J. Xu, “Persistence of lower dimensional hyperbolic tori for reversible system,” Appl. Math. Comput., 236, 408–421 (2014).

    MathSciNet  MATH  Google Scholar 

  23. J. S. W. Lamb and J. A. G. Roberts, “Time-reversal symmetry in dynamical systems: a survey,” Phys. D, 112, No. 1-2, 1–39 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Li and Y. Yi, “Persistence of hyperbolic tori in Hamiltonian systems,” J. Differ. Equ., 208, No. 2, 344–387 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  25. Zh. Liu, “Persistence of lower dimensional invariant tori on sub-manifolds in Hamiltonian systems,” Nonlinear Anal., 61, No. 8, 1319–1342 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  26. J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer, New York (1976).

    Book  MATH  Google Scholar 

  27. J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications [Russian translation], Mir, Moscow (1980).

  28. D. Montgomery and L. Zippin, Topological Transformation Groups, R. E. Krieger Publishing, Huntington (1974).

    MATH  Google Scholar 

  29. S. A. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups, Cambridge Univ. Press, Cambridge, 1977.

    Book  MATH  Google Scholar 

  30. S. A. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups [Russian translation], Mir, Moscow (1980).

  31. J. Moser, “Convergent series expansions for quasi-periodic motions,” Math. Ann., 169, No. 1, 136–176 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Moser, “On the expansion of quasi-periodic motions in convergent power series,” Usp. Mat. Nauk, 24, No. 2, 165–211 (1969).

    MathSciNet  Google Scholar 

  33. G. R. W. Quispel and M. B. Sevryuk, “KAM theorems for the product of two involutions of different types,” Chaos, 3, No. 4, 757–769 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  34. J. A. Roberts and G. R. W. Quispel, “Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems,” Phys. Rep., 216, No. 2-3, 63–177 (1992).

    Article  MathSciNet  Google Scholar 

  35. H. Rüssmann, “Invariant tori in non-degenerate nearly integrable Hamiltonian systems,” Regul. Chaotic Dyn., 6, No. 2, 119–204 (2001).

  36. H. Rüssmann, “Addendum to “Invariant tori in non-degenerate nearly integrable Hamiltonian systems,”” Regul. Chaotic Dyn., 10, No. 1, 21–31 (2005).

  37. M. B. Sevryuk, Reversible Systems, Springer, Berlin (1986).

    Book  MATH  Google Scholar 

  38. M. B. Sevryuk, “Linear reversible systems and their versal deformations,” Tr. Sem. Im. I. G. Petrovskogo, 15, 33–54 (1991).

    MathSciNet  MATH  Google Scholar 

  39. M. B. Sevryuk, “Some problems of the KAM-theory: conditionally-periodic motions in typical systems,” Usp. Mat. Nauk, 50, No. 2, 111–124 (1995).

    Google Scholar 

  40. M. B. Sevryuk, “The iteration-approximation decoupling in the reversible KAM theory,” Chaos, 5, No. 3, 552–565 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. B. Sevryuk, “Excitation of elliptic normal modes of invariant tori in Hamiltonian systems,” In: Topics in Singularity Theory, Am. Math. Soc., Providence (1997), pp. 209–218.

    MATH  Google Scholar 

  42. M. B. Sevryuk, “Excitation of elliptic normal modes of invariant tori in volume preserving flows,” In: Global Analysis of Dynamical Systems, Inst. Phys., Bristol (2001), pp. 339–352.

    MATH  Google Scholar 

  43. M. B. Sevryuk, “Partial preservation of frequencies in KAM theory,” Nonlinearity, 19, No. 5, 1099–1140 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  44. M. B. Sevryuk, “Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman’s method,” Discrete Contin. Dyn. Syst., 18, No. 2-3, 569–595 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  45. M. B. Sevryuk, “Partial preservation of frequencies and Floquet exponents in KAM theory,” Tr. MIAN, 259, 174–202 (2007).

    MathSciNet  MATH  Google Scholar 

  46. M. B. Sevryuk, “KAM tori: persistence and smoothness,” Nonlinearity, 21, No. 10, T177–T185 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  47. M. B. Sevryuk, “The reversible context 2 in KAM theory: the first steps,” Regul. Chaotic Dyn., 16, No. 1-2, 24–38 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  48. M. B. Sevryuk, “KAM theory for lower dimensional tori within the reversible context 2,” Mosc. Math. J., 12, No. 2, 435–455 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  49. M. B. Sevryuk, “Quasi-periodic perturbations within the reversible context 2 in KAM theory,” Indag. Math. (N. S.), 23, No. 3, 137–150 (2012).

  50. M. B. Sevryuk, “Whitney smooth families of invariant tori within the reversible context 2 of KAM theory,” Regul. Chaotic Dyn., 21, No. 6, 599–620 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  51. M. B. Sevryuk, “Herman’s approach to quasi-periodic perturbations in the reversible KAM context 2,” Mosc. Math. J., 17, No. 4, 803–823 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  52. C. W. Shih, “Normal forms and versal deformations of linear involutive dynamical systems,” Chinese J. Math., 21, No. 4, 333–347 (1993).

    MathSciNet  MATH  Google Scholar 

  53. T. Tao, Poincaré’s Legacies, Pages from Year Two of a Mathematical Blog. Part I, Am. Math. Soc., Providence (2009).

  54. J. Tits, Oeuvres/Collected Works. Vol. IV, Eur. Math. Soc., Z¨urich (2013).

  55. F. Wagener, “A parametrised version of Moser’s modifying terms theorem,” Discrete Contin. Dyn. Syst. Ser. S, 3, No. 4, 719–768 (2010).

    MathSciNet  MATH  Google Scholar 

  56. X. Wang, J. Xu, and D. Zhang, “Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems,” Discrete Contin. Dyn. Syst. Ser. B, 14, No. 3, 1237–1249 (2010).

    MathSciNet  MATH  Google Scholar 

  57. X. Wang, J. Xu, and D. Zhang, “A new KAM theorem for the hyperbolic lower dimensional tori in reversible systems,” Acta Appl. Math., 143, 45–61 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  58. X. Wang, J. Xu, D. Zhang, “A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems,” Discrete Contin. Dyn. Syst., 37, No. 4, 2141–2160 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  59. J. Xu and X. Lu, “General KAM theorems and their applications to invariant tori with prescribed frequencies,” Regul. Chaotic Dyn., 21, No. 1, 107–125 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  60. J.-C. Yoccoz, “Travaux de Herman sur les tores invariants,” Astérisque, 206, 311–344 (1992).

    MathSciNet  MATH  Google Scholar 

  61. D. Zhang, J. Xu, and H. Wu, “On invariant tori with prescribed frequency in Hamiltonian systems,” Adv. Nonlinear Stud., 16, No. 4, 719–735 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Sevryuk.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 63, No. 3, Differential and Functional Differential Equations, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevryuk, M.B. Partial Preservation of Frequencies and Floquet Exponents of Invariant Tori in the Reversible KAM Context 2. J Math Sci 253, 730–753 (2021). https://doi.org/10.1007/s10958-021-05265-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05265-x

Navigation