Skip to main content

Advertisement

Log in

Bohr Inequalities in Some Classes of Analytic Functions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The paper is a review of the latest results of I. R. Kayumov and S. Ponnusamy on the Bohr inequality. An exact estimate in the strong Bohr inequality is obtained and the Bohr–Rogosinski radius for a certain class of subordinations is examined. All results are exact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Abu-Muhanna, “Bohr’s phenomenon in subordination and bounded harmonic classes,” Complex Var. Elliptic Equ., 55, No. 11, 1071–1078 (2010).

    Article  MathSciNet  Google Scholar 

  2. Y. Abu-Muhanna and R. M. Ali, “Bohr’s phenomenon for analytic functions into the exterior of a compact convex body,” J. Math. Anal. Appl., 379, No. 2, 512–517 (2011).

    Article  MathSciNet  Google Scholar 

  3. Y. Abu-Muhanna, R. M. Ali, Z. C. Ng, and S. F. M. Hasni, “Bohr radius for subordinating families of analytic functions and bounded harmonic mappings,” J. Math. Anal. Appl., 420, No. 1, 124–136 (2014).

    Article  MathSciNet  Google Scholar 

  4. R. M. Ali, Y. Abu-Muhanna, and S. Ponnusamy, “On the Bohr inequality,” in: Progress in Approximation Theory and Applicable Complex Analysis, Springer Optimization and Its Applications, 117 (2016), pp. 265–295.

  5. R.M. Ali, R. W. Barnard, and A. Yu. Solynin, “A note on the Bohr’s phenomenon for power series,” J. Math. Anal. Appl., 449, No. 1, 154–167 (2017).

    Article  MathSciNet  Google Scholar 

  6. L. Aizenberg, “Generalization of results about the Bohr radius for power series,” Stud. Math., 180, 161–168 (2007).

    Article  MathSciNet  Google Scholar 

  7. J. M. Anderson, J. G. Clunie, and C. Pommerenke, “On Bloch functions and normal functions,” J. Reine Angew. Math., 270, 12–37 (1974).

    MATH  MathSciNet  Google Scholar 

  8. F. G. Avkhadiev and K.-J. Wirths, Schwarz–Pick Type Inequalities, Birkhäuser, Basel–Boston–Berlin (2009).

    Book  Google Scholar 

  9. C. Bénéteau, A. Dahlner, and D. Khavinson, “Remarks on the Bohr phenomenon,” Comput. Methods Funct. Theory, 4, No. 1, 1–19 (2004).

    Article  MathSciNet  Google Scholar 

  10. H. P. Boas, “Majorant series,” Korean Math. Soc., 37, No. 2, 321–337 (2000).

    MATH  MathSciNet  Google Scholar 

  11. H. P. Boas and D. Khavinson, “Bohr’s power series theorem in several variables,” Proc. Am. Math. Soc., 125, No. 10, 2975–2979 (1997).

    Article  MathSciNet  Google Scholar 

  12. H. P. Boas and D. Khavinson, “Vita: Friedrich Wilhelm Wiener,” Math. Intel., 22, 73–75 (2000).

    Article  MathSciNet  Google Scholar 

  13. H. Bohr, “A theorem concerning power series,” Proc. London Math. Soc., 13, No. 2, 1–5 (1914).

    Article  MathSciNet  Google Scholar 

  14. F. Colonna, “The Bloch constant of bounded harmonic mappings,” Indiana Univ. Math. J., 38, 829–840 (1989).

    Article  MathSciNet  Google Scholar 

  15. Sh. Chen, S. Ponnusamy, and X. Wang, “Landau theorem and Marden constant for harmonic ν-bloch mappings,” Bull. Aust. Math. Soc., 84, 19–32 (2011).

    Article  MathSciNet  Google Scholar 

  16. Sh. Chen, S. Ponnusamy, X. Wang, “Coefficient estimates and Landau–Bloch theorem for planar harmonic mappings,” Bull. Malays. Math. Sci. Soc., 34, No. 2, 255–265 (2011).

    MATH  MathSciNet  Google Scholar 

  17. Sh. Chen, S. Ponnusamy, X. Wang, “Landau–Bloch constants for functions in α-Bloch spaces and Hardy spaces,” Complex Anal. Oper. Theory, 6, 1025–1036 (2012).

    Article  MathSciNet  Google Scholar 

  18. P. L. Duren, Univalent Functions, Springer-Verlag, New York (1983).

    MATH  Google Scholar 

  19. G. M. Goluzin, “On subordinated univalent functions,” Tr. Mat. Inst. Steklova, 38, 68–71 (1951).

    Google Scholar 

  20. I. R. Kayumov and S. Ponnusamy, “Bohr inequality for odd analytic functions,” Comput. Methods Funct. Theory, 17, No. 4, 679–688 (2017).

    Article  MathSciNet  Google Scholar 

  21. I. R. Kayumov and S. Ponnusamy, Bohr’s inequality for analytic functions \( \sum \limits_k{b}_k{z}^{kp+m} \) and harmonic functions, e-print arXiv:1708.05578.

  22. I. R. Kayumov and S. Ponnusamy, Bohr–Rogosinski radius for analytic functions, e-print arXiv:1708.05585.

  23. I. R. Kayumov, S. Ponnusamy, and N. Shakirov, “Bohr radius for locally univalent harmonic mappings,” Math. Nachr., 291, No. 11-12, 1757–1768 (2018).

    Article  MathSciNet  Google Scholar 

  24. E. Landau and D. Gaier, Darstellung und Begrüundung einiger neuerer Ergebnisse der Funktionentheorie, Springer-Verlag, Berlin (1986).

    Book  Google Scholar 

  25. G. Liu and S. Ponnusamy, On harmonic ν-Bloch and ν-Bloch-type mappings, e-print arXiv:1707.01570.

  26. C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, New York (1992).

    Book  Google Scholar 

  27. G. Popescu, “Multivariable Bohr inequalities,” Trans. Am. Math. Soc., 359, No. 11, 5283–5317 (2007).

    Article  MathSciNet  Google Scholar 

  28. W. Rogosinski, “Über Bildschranken bei Potenzreihen und ihren Abschnitten,” Math. Z., 17, 260–276 (1923).

    Article  MathSciNet  Google Scholar 

  29. I. Schur and G. Szegő, “Über die Abschnitte einer im Einheitskreise beschränkten Potenzreihe,” Sitz.-Ber. Preuss. Acad. Wiss. Berlin Phys.-Math. Kl., 545–560 (1925).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ismagilov.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 153, Complex Analysis, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismagilov, A.A., Kayumova, A.V., Kayumov, I.R. et al. Bohr Inequalities in Some Classes of Analytic Functions. J Math Sci 252, 360–373 (2021). https://doi.org/10.1007/s10958-020-05165-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-05165-6

Keywords and phrases

AMS Subject Classification

Navigation