Skip to main content
Log in

Bohr Inequality for Odd Analytic Functions

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We determine the Bohr radius for the class of odd functions f satisfying \(|f(z)|\le 1\) for all \(|z|<1\), solving the recent problem of Ali et al. (J Math Anal Appl 449(1):154–167, 2017). In fact, we solve this problem in a more general setting. Then we discuss Bohr’s radius for the class of analytic functions g, when g is subordinate to a member of the class of odd univalent functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu-Muhanna, Y.: Bohr’s phenomenon in subordination and bounded harmonic classes. Complex Var. Elliptic Equ. 55(11), 1071–1078 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abu-Muhanna, Y., Ali, R.M.: Bohr’s phenomenon for analytic functions into the exterior of a compact convex body. J. Math. Anal. Appl. 379(2), 512–517 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abu-Muhanna, Y., Ali, R.M.: Bohr’s phenomenon for analytic functions and the hyperbolic metric. Math. Nachr. 286(11–12), 1059–1065 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aizenberg, L.: Multidimensional analogues of Bohr’s theorem on power series. Proc. Am. Math. Soc. 128(4), 1147–1155 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aizenberg, L.: Generalization of Carathéodory’s inequality and the Bohr radius for multidimensional power series. In: Selected Topics in Complex Analysis, Operator Theory: Advances and Applications, vol. 158, pp. 87–94. Birkhäuser, Basel (2005)

  6. Aizenberg, L., Aytuna, A., Djakov, P.: An abstract approach to Bohr’s phenomenon. Proc. Am. Math. Soc. 128(9), 2611–2619 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aizenberg, L., Tarkhanov, N.: A Bohr phenomenon for elliptic equations. Proc. Lond. Math. Soc. 82(2), 385–401 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ali, R.M., Abu-Muhanna, Y., Ponnusamy, S.: On the Bohr inequality. In: Govil, N.K. et al. (eds.) Progress in Approximation Theory and Applicable Complex Analysis. Springer Optimization and Its Applications, vol. 117, pp. 265–295. Springer (2016)

  9. Ali, R.M., Barnard, R.W., Solynin, A.Yu.: A note on the Bohr’s phenomenon for power series. J. Math. Anal. Appl. 449(1), 154–167 (2017)

  10. Avkhadiev, F.G., Wirths, K.-J.: Schwarz–Pick type inequalities. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  11. Balasubramanian, R., Calado, B., Queffélec, H.: The Bohr inequality for ordinary Dirichlet series. Stud. Math. 175(3), 285–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bénéteau, C., Dahlner, A., Khavinson, D.: Remarks on the Bohr phenomenon. Comput. Methods Funct. Theory 4(1), 1–19 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boas, H.P., Khavinson, D.: Bohr’s power series theorem in several variables. Proc. Am. Math. Soc. 125(10), 2975–2979 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bohr, H.: A theorem concerning power series. Proc. Lond. Math. Soc. 13(2), 1–5 (1914)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dixon, P.G.: Banach algebras satisfying the non-unital von Neumann inequality. Bull. Lond. Math. Soc. 27(4), 359–362 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duren, P.L.: Univalent Functions. Springer, New York (1983)

    MATH  Google Scholar 

  17. Goluzin, G.M.: Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, vol. 26. American Mathematical Society, Providence (1969). vi + 676 pp

    MATH  Google Scholar 

  18. Paulsen, V.I., Singh, D.: Bohr’s inequality for uniform algebras. Proc. Am. Math. Soc. 132(12), 3577–3579 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Popescu, G.: Multivariable Bohr inequalities. Trans. Am. Math. Soc. 359(11), 5283–5317 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rogosinski, W.: On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 48(2), 48–82 (1943)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of the first author was supported by Russian foundation for basic research, Proj. 17-01-00282, and the research of the second author was supported by the project RUS/RFBR/P-163 under Department of Science & Technology (India). The second author is currently working at the ISI Chennai Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saminathan Ponnusamy.

Additional information

Communicated by Dmitri Khavinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayumov, I.R., Ponnusamy, S. Bohr Inequality for Odd Analytic Functions. Comput. Methods Funct. Theory 17, 679–688 (2017). https://doi.org/10.1007/s40315-017-0206-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-017-0206-2

Keywords

Mathematics Subject Classification

Navigation