Skip to main content
Log in

\( {\mathfrak{B}}_1 \) classes of De Giorgi, Ladyzhenskaya, and Ural’tseva and their application to elliptic and parabolic equations with nonstandard growth

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The article provides an application of the generalized De Giorgi functional classes to the proof of the HÖlder continuity of weak solutions to quasilinear elliptic and parabolic equations with nonstandard growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Acerbi and N. Fusco, “Partial regularity under anisotropic (p, q) growth conditions,” J. Differ. Equ., 107, No. 1, 46–67 (1994).

    MathSciNet  MATH  Google Scholar 

  2. E. Acerbi and G. Mingione, “Regularity results for a class of functionals with non-standard growth,” Arch. Rat. Mech. Anal., 156, No. 2, 121–140 (2001).

    MathSciNet  MATH  Google Scholar 

  3. E. Acerbi and G. Mingione, “Regularity results for a class of quasiconvex functionals with nonstandard growth,” Ann. Scuola Norm. Sup. Pisa Cl. Sci., 30, No. 2, 311–339 (2001).

    MathSciNet  MATH  Google Scholar 

  4. E. Acerbi and G. Mingione, “Regularity results for stationary electro-rheological fluids,” Arch. Rat. Mech. Anal., 164, No. 3, 213–259 (2002).

    MathSciNet  MATH  Google Scholar 

  5. E. Acerbi and G. Mingione, “Gradient estimates for the p(x)-Laplacean system,” J. Reine Angew. Math., 584, 117–148 (2005).

    MathSciNet  MATH  Google Scholar 

  6. Yu. A. Alkhutov, “The Harnack inequality and the H¨older property of solutions of nonlinear elliptic equations with a nonstandard growth condition,” Differ. Equ., 33, No. 12, 1653–1663 (1998).

    MATH  Google Scholar 

  7. Yu. A. Alkhutov and O. V. Krasheninnikova, “Continuity at boundary points of solutions of quasilinear elliptic equations with a nonstandard growth condition,” Izv. Math., 68, No. 6, 1063–1117 (2004).

    MathSciNet  MATH  Google Scholar 

  8. Yu. A. Alkhutov and O. V. Krasheninnikova, “On the continuity of solutions of elliptic equations with a variable order of nonlinearity,” Proc. Steklov Inst. Math., 261, No. 1, 1–10 (2008).

    MathSciNet  MATH  Google Scholar 

  9. Yu. A. Alkhutov and M. D. Surnachev, “Behavior at a boundary point of solutions of the Dirichlet problem for the p(x)-Laplacian,” Alg. Analiz, 31, No. 2, 88–117 (2019).

    MathSciNet  Google Scholar 

  10. Yu. A. Alkhutov and M. D. Surnachev, “A Harnack inequality for a transmission problem with p(x)- Laplacian,” Appl. Anal., 98, Nos. 1–2, 332–344 (2019).

    MathSciNet  MATH  Google Scholar 

  11. Yu. A. Alkhutov and M. D. Surnachev, “On the Harnack inequality for the p(x)-Laplacian with a doublephase exponent p(x),” Tr. Semin. im. I.G. Petrovskogo, 32, 8–56 (2019).

    Google Scholar 

  12. Yu. A. Alkhutov and V. V. Zhikov, “HÖlder continuity of solutions of parabolic equations with variable nonlinearity exponent,” J. Math. Sci., 179, No. 3, 347–389 (2011).

    MathSciNet  MATH  Google Scholar 

  13. S. N. Antontsev, J. I. Díaz, and S. Shmarev, Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics, Birkh´’auser, Boston, 2002.

    MATH  Google Scholar 

  14. S. Antontsev and S. Shmarev, “Anisotropic parabolic equations with variable nonlinearity,” Publ. Mat., 53, No. 2, 355–399 (2009).

    MathSciNet  MATH  Google Scholar 

  15. S. Antontsev and S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions. Existence, Uniqueness, Localization, Blow-up, Atlantis Press, Paris, 2015.

  16. P. Baroni and V. Bogelein, “Calder´on–Zygmund estimates for parabolic p(x, t)-Laplacian systems,” Rev. Mat. Iberoam., 30, No. 4, 1355–1386 (2014).

    MathSciNet  MATH  Google Scholar 

  17. P. Baroni, M. Colombo, and G. Mingione, “Harnack inequalities for double phase functionals,” Nonlin. Anal., 121, 206–222 (2015).

    MathSciNet  MATH  Google Scholar 

  18. P. Baroni, M. Colombo, and G. Mingione, “Nonautonomous functionals, borderline cases and related function classes,” St. Petersburg Math. J., 27, No. 3, 347–379 (2016).

    MathSciNet  MATH  Google Scholar 

  19. P. Baroni, M. Colombo, and G. Mingione, “Regularity for general functionals with double phase,” Calc. Var. Part. Differ. Equ., 57, No. 2, Art. 62 (2018).

  20. I. Benedetti and E. Mascolo, “Regularity of minimizers for nonconvex vectorial integrals with p-q growth via relaxation methods,” Abstr. Appl. Anal., No. 1, 27–44 (2004).

    MATH  Google Scholar 

  21. V. BÖgelein and F. Duzaar, “Higher integrability for parabolic systems with non-standard growth and degenerate diffusions,” Publ. Mat, 55, No. 1, 201–250 (2011).

    MathSciNet  MATH  Google Scholar 

  22. V. BÖgelein and F. Duzaar, “HÖlder estimates for parabolic p(x, t)-Laplacian systems,” Math. Ann., 354, No. 3, 907–938 (2012).

    MathSciNet  MATH  Google Scholar 

  23. S. Bonafede and M.V. Voitovych, “HÖlder continuity up to the boundary of solutions to nonlinear fourthorder elliptic equations with natural growth terms,” Differ. Equ. Appl., 11, No. 1, 107–127 (2019).

    MathSciNet  MATH  Google Scholar 

  24. K. O. Buryachenko and I. I. Skrypnik, “Harnack’s inequality for double-phase parabolic equations,” J. Evol. Equ. (to appear).

  25. V. ChiadÓ Piat and A. Coscia, “HÖlder continuity of minimizers of functionals with variable growth exponent,” Manuscr. Math., 93, No. 3, 283–299 (1997).

    MATH  Google Scholar 

  26. M. Colombo and G. Mingione, “Bounded minimisers of double phase variational integrals,” Arch. Rat. Mech. Anal., 218, No. 1, 219–273 (2015).

    MathSciNet  MATH  Google Scholar 

  27. M. Colombo and G. Mingione, “Regularity for double phase variational problems,” Arch. Rat. Mech. Anal., 215, No. 2, 443–496 (2015).

    MathSciNet  MATH  Google Scholar 

  28. G. Cupini, N. Fusco, and R. Petti, “HÖlder continuity of local minimizers,” J. Math. Anal. Appl., 235, No. 2, 578–597 (1999).

    MathSciNet  MATH  Google Scholar 

  29. G. Cupini, M. Guidorzi, and E. Mascolo, “Regularity of minimizers of vectorial integrals with p-q growth,” Nonlin. Anal., 54, No. 4, 591–616 (2003).

    MathSciNet  MATH  Google Scholar 

  30. G. Cupini and A.P. Migliorini, “HÖlder continuity for local minimizers of a nonconvex variational problem,” J. Convex Anal., 10, No. 2, 389–408 (2003).

    MathSciNet  MATH  Google Scholar 

  31. A. Dall’Aglio, E. Mascolo, and G. Papi, “Local boundedness for minima of functionals with nonstandard growth conditions,” Rend. Mat. Appl. (7), 18, No. 2, 305–326 (1998).

  32. E. De Giorgi, “Sulla differenziabilit`a e l’analiticitá delle estremali degli integrali multipli regolari,” Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (3), 3, 25–43 (1957).

  33. E. DiBenedetto, “On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients,” Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 13, No. 3, 487–535 (1986).

  34. E. DiBenedetto, Degenerate Parabolic Equations, Springer, New York, 1993.

    MATH  Google Scholar 

  35. E. DiBenedetto and U. Gianazza, Some Properties of DeGiorgi Classes, arXiv:1604.07699v1 [math.AP].

  36. E. DiBenedetto and U. Gianazza, “Some properties of DeGiorgi classes,” Rend. Istit. Mat. Univ. Trieste, 48, 245–260 (2016).

    MathSciNet  MATH  Google Scholar 

  37. E. DiBenedetto and N. S. Trudinger, “Harnack inequalities for quasiminima of variational integrals,” Ann. Inst. H. Poincaré Anal. Non Lineaire, 1, No. 4, 295–308 (1984).

    MathSciNet  MATH  Google Scholar 

  38. F. Duzaar and J. Habermann, “Partial regularity for parabolic systems with non-standard growth,” J. Evol. Equ., 12, No. 1, 203–244 (2012).

    MathSciNet  MATH  Google Scholar 

  39. M. Eleuteri, “HÖlder continuity results for a class of functionals with non-standard growth,” Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7, No. 1, 129–157 (2004).

  40. L. Esposito, F. Leonetti, and G. Mingione, “Regularity for minimizers of functionals with p-q growth,” Nonlin. Differ. Equ. Appl., 6, No. 2, 133–148 (1999).

    MathSciNet  MATH  Google Scholar 

  41. L. Esposito, F. Leonetti, and G. Mingione, “Higher integrability for minimizers of integral functionals with (p,q) growth,” J. Differ. Equ., 157, No. 2, 414–438 (1999).

    MathSciNet  MATH  Google Scholar 

  42. L. Esposito, F. Leonetti, and G. Mingione, “Regularity results for minimizers of irregular integrals with (p,q) growth,” Forum Math., 14, No. 2, 245–272 (2002).

  43. L. Esposito, F. Leonetti, and G. Mingione, “Sharp regularity for functionals with (p,q) growth,” J. Differ. Equ., 204, No. 1, 5–55 (2004).

    MathSciNet  MATH  Google Scholar 

  44. L. Esposito and G. Mingione, “A regularity theorem for ω-minimizers of integral functionals,” Rend. Mat. Appl. (7), 19, No. 1, 17–44 (1999).

  45. L. Esposito and G. Mingione, “Partial regularity for minimizers of convex integrals with Llog L-growth,” Nonlin. Differ. Equ. Appl., 7, No. 1, 107–125 (2000).

    MATH  Google Scholar 

  46. L. Esposito and G. Mingione, “Partial regularity for minimizers of degenerate polyconvex energies,” J. Convex Anal., 8, No. 1, 1–38 (2001).

    MathSciNet  MATH  Google Scholar 

  47. X. Fan and D. Zhao, “A class of De Giorgi type and HÖlder continuity,” Nonlin. Anal., 36, 295–318 (1999).

    MATH  Google Scholar 

  48. I. Fonseca and N. Fusco, “Regularity results for anisotropic image segmentation models,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24, No. 3, 463–499 (1997).

  49. N. Fusco and C. Sbordone, “Local boundedness of minimizers in a limit case,” Manuscr. Math., 69, No. 1, 19–25 (1990).

    MathSciNet  MATH  Google Scholar 

  50. N. Fusco and C. Sbordone, “Some remarks on the regularity of minima of anisotropic integrals,” Comm. Partial Differ. Equ., 18, Nos. 1–2, 153–167 (1993).

    MathSciNet  MATH  Google Scholar 

  51. U. Gianazza, M. Surnachev, and V. Vespri, “A new proof of the H¨older continuity of solutions to p-Laplace type parabolic equations,” Adv. Calc. Var., 3, No. 3, 263–278 (2010).

    MathSciNet  MATH  Google Scholar 

  52. U. Gianazza and V. Vespri, “Parabolic De Giorgi classes of order p and the Harnack inequality,” Calc. Var. Part. Differ. Equ., 26, No. 3, 379–399 (2006).

    MathSciNet  MATH  Google Scholar 

  53. S. Hwang and G. M. Lieberman, “HÖlder continuity of bounded weak solutions to generalized parabolic p-Laplacian equations I: degenerate case,” Electron. J. Differ. Equ., 2015, No. 287 (2015).

  54. S. Hwang and G. M. Lieberman, “HÖlder continuity of bounded weak solutions to generalized parabolic p-Laplacian equations II: singular case,” Electron. J. Differ. Equ., 2015, No. 288 (2015).

  55. S. Hwang and G. M. Lieberman, H¨older Continuity of a Bounded Weak Solution to Generalized Parabolicp-Laplacian Equations, arXiv:1407.0531v2 [math.AP]

  56. A. V. Ivanov, “The classes Bm;l and H¨older estimates for quasilinear parabolic equations that admit double degeneration,” J. Math. Sci., 75, No. 6, 2011–2027 (1995).

    MathSciNet  Google Scholar 

  57. A. V. Ivanov, “HÖlder estimates for equations of fast diffusion type,” St. Petersburg Math. J., 6, No. 4, 791–825 (1995).

    MathSciNet  Google Scholar 

  58. I. M. Kolodii, “The boundedness of generalized solutions of elliptic differential equations,” Vest. Moskov. Univ. Ser. I. Mat. Meh., 25, No. 5, 44–52 (1970).

    MathSciNet  Google Scholar 

  59. I. M. Kolodii, “The Liouville theorem for generalized solutions of degenerate quasilinear parabolic equations,” Differ. Uravn., 21, No. 5, 841–854 (1985).

    MathSciNet  Google Scholar 

  60. I. M. Kolodii, “An estimate for the maximum modulus of generalized solutions of the first boundary value problem for degenerate parabolic equations,” Ukr. Math. J., 49, No. 12, 1827–1845 (1997).

    MathSciNet  Google Scholar 

  61. I. M. Kolodii and I. I. Verba, “An a priori estimate for the modulus of continuity of the generalized solution of a parabolic equation in divergence form with degeneration,” Ukr. Math. J., 53, No. 2, 214 228 (2001).

  62. A. A. Kovalevsky, I. I. Skrypnik, and A. E. Shishkov, Singular Solutions of Nonlinear Elliptic and Parabolic Equations, de Gruyter, Berlin/Boston, 2016.

    MATH  Google Scholar 

  63. A. A. Kovalevskii and M. V. Voitovich, “On the improvement of summability of generalized solutions of the Dirichlet problem for nonlinear equations of the fourth order with strengthened ellipticity,” Ukr. Math. J., 58, No. 11, 1717–1733 (2006).

    MATH  Google Scholar 

  64. O. V. Krasheninnikova, “On the continuity at a point of solutions of elliptic equations with a nonstandard growth condition,” Proc. Steklov Inst. Math., 236, No. 1, 193–200 (2002).

    MathSciNet  MATH  Google Scholar 

  65. S. N. Kružkov and I. M. Kolodii, “A priori estimates and Harnack’s inequality for generalized solutions of degenerate quasilinear parabolic equations,” Sibirsk. Mat. Zh., 18, No. 3, 608–628 (1977).

    MathSciNet  Google Scholar 

  66. O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.

    Google Scholar 

  67. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Equations of Elliptic Type, Acad. Press, New York, 1968.

    MATH  Google Scholar 

  68. M. Lavrentieff, “Sur quelques probl´emes du calcul des variations,” Ann. Mat. Pura Appl., 4, No. 1, 7–28 (1926).

    MathSciNet  Google Scholar 

  69. F. Leonetti, “Higher differentiability for weak solutions of elliptic systems with nonstandard growth conditions,” Ricerche Mat., 42, No. 1, 101–122 (1993).

    MathSciNet  MATH  Google Scholar 

  70. F. Leonetti, “Higher integrability for minimizers of integral functionals with nonstandard growth,” J. Differ. Equ., 112, No. 2, 308–324 (1994).

    MathSciNet  MATH  Google Scholar 

  71. S. Li and X. Liu, “The G class of functions and its applications,” Acta Math. Sin., 16, No. 3, 455–468 (2000).

    MathSciNet  MATH  Google Scholar 

  72. G. M. Lieberman, “The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations,” Comm. Part. Differ. Equ., 16, Nos. 2–3, 311–361 (1991).

    MathSciNet  MATH  Google Scholar 

  73. G. M. Lieberman, “On the regularity of the minimizer of a functional with exponential growth,” Comment. Math. Univ. Carolin., 33, No. 1, 45–49 (1992).

    MathSciNet  MATH  Google Scholar 

  74. G. M. Lieberman, “Gradient estimates for a new class of degenerate elliptic and parabolic equations,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21, No. 4, 497–522 (1994).

  75. G. M. Lieberman, “Gradient estimates for anisotropic elliptic equations,” Adv. Differ. Equ., 10, No. 7, 767–812 (2005).

    MathSciNet  MATH  Google Scholar 

  76. P. Marcellini, “Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions,” Arch. Rat. Mech. Anal., 105, No. 3, 267–284 (1989).

    MATH  Google Scholar 

  77. P. Marcellini, “Regularity and existence of solutions of elliptic equations with p, q-growth conditions,” J. Differ. Equ., 90, No. 1, 1–30 (1991).

    MathSciNet  MATH  Google Scholar 

  78. P. Marcellini, “Regularity for elliptic equations with general growth conditions,” J. Differ. Equ., 105, No. 2, 296–333 (1993).

    MathSciNet  MATH  Google Scholar 

  79. P. Marcellini, “Everywhere regularity for a class of elliptic systems without growth conditions,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23, No. 1, 1–25 (1996).

  80. P. Marcellini, “Regularity for some scalar variational problems under general growth conditions,” J. Optim. Theory Appl., 90, No. 1, 161–181 (1996).

    MathSciNet  MATH  Google Scholar 

  81. E. Mascolo and A.P. Migliorini, “Everywhere regularity for vectorial functionals with general growth,” ESAIM Control Optim. Calc. Var., 9, 399–418 (2003).

    MathSciNet  MATH  Google Scholar 

  82. E. Mascolo and G. Papi, “Local boundedness of minimizers of integrals of the calculus of variations,” Ann. Mat. Pura Appl. (4), 167, 323–339 (1994).

    MathSciNet  MATH  Google Scholar 

  83. E. Mascolo and G. Papi, “Harnack inequality for minimizers of integral functionals with general growth conditions,” Nonlin. Differ. Equ. Appl., 3, No. 2, 231–244 (1996).

    MathSciNet  MATH  Google Scholar 

  84. G. Mingione, “Regularity of minima: an invitation to the dark side of the calculus of variations,” Appl. Math., 51, No. 4, 355–426 (2006).

    MathSciNet  MATH  Google Scholar 

  85. G. Moscariello and L. Nania, “HÖlder continuity of minimizers of functionals with nonstandard growth conditions,” Ricerche Mat., 40, No. 2, 259–273 (1991).

    MathSciNet  MATH  Google Scholar 

  86. J. Moser, “A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations,” Comm. Pure Appl. Math., 13, 457–468 (1960).

    MathSciNet  MATH  Google Scholar 

  87. J. Moser, “On Harnack’s theorem for elliptic differential equations,” Comm. Pure Appl. Math., 14, 577–591 (1961).

    MathSciNet  MATH  Google Scholar 

  88. J. Nash, “Continuity of solutions of parabolic and elliptic equations,” Amer. J. Math., 80, No. 4, 931–954 (1958).

    MathSciNet  MATH  Google Scholar 

  89. M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000.

    MATH  Google Scholar 

  90. J. Serrin, “Local behavior of solutions of quasi-linear equations,” Acta Math., 111, 247–302 (1964).

    MathSciNet  MATH  Google Scholar 

  91. I. I. Skrypnik, “On the Wiener test for degenerate parabolic equations with non-standard growth condition,” Adv. Differ. Equ., 13, Nos. 3–4, 229–272 (2008).

  92. I. I. Skrypnik, “On the sufficient condition for regularity of a boundary point for singular parabolic equations with non-standard growth,” Math. Nachr., 284, No. 16, 2101–2122 (2011).

    MathSciNet  MATH  Google Scholar 

  93. I. I. Skrypnik and K. O. Buryachenko, “Pointwise estimates of solutions to the double-phase elliptic equations,” J. Math. Sci., 222, No. 6, 772–786 (2017).

    MathSciNet  MATH  Google Scholar 

  94. I. V. Skrypnik, “High order quasilinear elliptic equations with continuous generalized solutions,” Differ. Equ., 14, No. 6, 786–795 (1978).

    MATH  Google Scholar 

  95. I. V. Skrypnik, “The HÖlder property of functions in the class Bq;s,” Ukr. Math. J., 45, No. 7, 1134–1144 (1993).

    MathSciNet  MATH  Google Scholar 

  96. I. V. Skrypnik, “Pointwise estimates of potentials for higher-order capacity,” Ukr. Math. J., 49, No. 1, 165–180 (1997).

    MathSciNet  Google Scholar 

  97. M. V. Voitovych, “HÖlder continuity of bounded generalized solutions for nonlinear fourth-order elliptic equations with strengthened coercivity and natural growth terms,” Electron. J. Differ. Equ., 2017, No. 63, 1–18 (2017).

    MathSciNet  MATH  Google Scholar 

  98. M. V. Voitovych, “Improved integrability and boundedness of solutions to some high-order variational problems,” J. Math. Sci., 235, No. 1, 81–102 (2018).

    MathSciNet  MATH  Google Scholar 

  99. M. V. Voitovych, “Pointwise estimates of solutions to 2m-order quasilinear elliptic equations with m-(p, q) growth via Wolff potentials,” Nonlin. Anal., 181, 147–179 (2019).

    MathSciNet  MATH  Google Scholar 

  100. J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart, 1998.

    MATH  Google Scholar 

  101. P. Winkert and R. Zacher, “Global a priori bounds for weak solutions to quasilinear parabolic equations with nonstandard growth,” Nonlin. Anal., 145, 1–23 (2016).

    MathSciNet  MATH  Google Scholar 

  102. M. Xu and Y. Z. Chen, “HÖlder continuity of weak solutions for parabolic equations with nonstandard growth conditions,” Acta Math. Sin., 22, No. 3, 793–806 (2006).

    MathSciNet  MATH  Google Scholar 

  103. F. Yao, “HÖlder regularity of the gradient for the non-homogeneous parabolic p(x, t)-Laplacian equations,” Math. Meth. Appl. Sci., 37, No. 12, 1863–1872 (2014).

    MATH  Google Scholar 

  104. F. Yao, “HÖlder regularity for the general parabolic p(x, t)-Laplacian equations,” Nonlin. Differ. Equ. Appl., 22, No. 1, 105–119 (2015).

    MATH  Google Scholar 

  105. V. V. Zhikov, “Questions of convergence, duality, and averaging for functionals of the calculus of variations,” Math. USSR-Izv., 23, No. 2, 243–276 (1984).

    MathSciNet  MATH  Google Scholar 

  106. V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory,” Math. USSRIzv., 29, No. 1, 33–66 (1987).

    MATH  Google Scholar 

  107. V. V. Zhikov, “The Lavrent’ev effect and averaging of nonlinear variational problems,” Differ. Equ., 27, No. 1, 32–39 (1991).

    MathSciNet  MATH  Google Scholar 

  108. V. V. Zhikov, “On Lavrent’ev’s phenomenon,” Russ. J. of Math. Phys., 3, No. 2, 249–269 (1995).

    MATH  Google Scholar 

  109. V. V. Zhikov, “On the density of smooth functions in Sobolev–Orlicz spaces,” J. Math. Sci., 132, No. 3, 285–294 (2006).

    MathSciNet  Google Scholar 

  110. V. V. Zhikov and S. E. Pastukhova, “On the improved integrability of the gradient of solutions of elliptic equations with a variable nonlinearity exponent,” Sb. Math., 199, Nos. 11–12, 1751–1782 (2008).

    MathSciNet  MATH  Google Scholar 

  111. V. V. Zhikov and S. E. Pastukhova, “On the property of higher integrability for parabolic systems of variable order of nonlinearity,” Math. Notes, 87, Nos. 1–2, 169–188 (2010).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor I. Skrypnik.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 16, No. 3, pp. 403–447 July–September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skrypnik, I.I., Voitovych, M.V. \( {\mathfrak{B}}_1 \) classes of De Giorgi, Ladyzhenskaya, and Ural’tseva and their application to elliptic and parabolic equations with nonstandard growth. J Math Sci 246, 75–109 (2020). https://doi.org/10.1007/s10958-020-04724-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04724-1

Keywords

Navigation