Skip to main content
Log in

On the General Definition of the Production of Entropy in Open Markov Quantum Systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We discuss the question of the general definition of the production of entropy per unit time for a quantum system governed by the Lindblad equation. The difficulty is as follows: in order to determine the total production of entropy, one must know the entropy flow from the system into the environment. This requires additional information on the environment and on its interaction with the system. The Lindblad equation for the reduced density matrix of the system does not contain such information. Therefore, the following question arises: What minimum additional information about the environment must be added to the Lindblad equation in order to find the flow of entropy into the environment and the total production of entropy? To answer this question, we use the concept of a complementary quantum channel known from the the quantum information theory. We also prove a theorem on the nonnegativity of production of entropy, and, under certain assumptions, the adiabatic and nonadiabatic contribution to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Accardi and S. V. Kozyrev, “Coherent population trapping in the stochastic limit,” Int. J. Theor. Phys., 45, No. 4, 661–668 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Accardi, Y. G. Lu, and I. Volovich, Quantum Theory and Its Stochastic Limit, Springer-Verlag, Berlin (2002).

    Book  MATH  Google Scholar 

  3. I. Ya. Aref’eva, I. V. Volovich, and S. V. Kozyrev, “Stochastic limit method and interference in quantum many-particle systems,” Teor. Mat. Fiz, 183, No. 3, 388–408 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Barra, “The thermodynamic cost of driving quantum systems by their boundaries,” Sci. Rep., 5, 14873 (2015).

    Article  Google Scholar 

  5. H.-P. Breuer and F. Petruccione, Theory of Open Quantum Systems, Oxford (2002).

  6. E. Davies, “Markovian master equations,” Commun. Math. Phys., 39, 91–110 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Devetak and P. Shor, “The capacity of a quantum channel for simultaneous transmission of classical and quantum information,” Commun. Math. Phys., 256, No. 2, 287–303 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Esposito, K. Lindenberg, and C. Van den Broek, “Entropy production as correlation between system and reservoir,” New J. Phys., 12, 013013 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Esposito and C. Van den Broeck, “Three faces of the second law. I. Master equation formulation,” Phys. Rev. E, 82, No. 1, 011143 (2010).

    Article  Google Scholar 

  10. F. Fagnola and V. Umanità, “Generators of detailed balance quantum Markov semigroups,” Inf. Dim. Anal. Quantum Prob. Rel. Top., 10, 335–363 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of N-level systems,” J. Math. Phys., 17, 821–825 (1976).

    Article  MathSciNet  Google Scholar 

  12. R. J. Harris and G. M. Schütz, “Fluctuation theorems for stochastic dynamics,” J. Stat. Mech., 7, P07020 (2007).

    MathSciNet  Google Scholar 

  13. T. Hatano and S. Sasa, “Steady-state thermodynamics of Langevin systems,” Phys. Rev. Lett., 86, No. 16, 3463–3466 (2001).

    Article  Google Scholar 

  14. A. S. Holevo, “Complementary channels and the problem of additivity,” Theory Probab. Appl., 51, No. 1, 133–143 (2006).

    MathSciNet  Google Scholar 

  15. A. S. Holevo, Quantum Systems, Channels, Information [in Russian], MCCME, Moscow (2010).

  16. J. M. Horowitz and M. R. Parrondo, “Entropy production along nonequilibrium quantum jump trajectories,” New J. Phys., 15, 085028 (2013).

    Article  Google Scholar 

  17. J. M. Horowitz and T. Sagawa, “Equivalent definitions of the quantum nonadiabatic entropy production,” J. Stat. Phys., 156, No. 1, 55–65 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Levy and R. Kosloff, “The local approach to quantum transport may violate the second law f thermodynamics,” Europhys. Lett., 107, No. 2, 20004 (2014).

    Article  Google Scholar 

  19. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys., 48, 119–130 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  20. I. A. Luchnikov and S. N. Filippov, Stroboscopic limit of sequential measurements, e-print arxiv.org/abs/1609.05501.

  21. M. Ohya and I. Volovich, Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Biosystems, Springer-Verlag, Dordrecht (2011).

    MATH  Google Scholar 

  22. Y. Oono and M. Paniconi, “Steady state thermodynamics,” Progr. Theor. Phys. Suppl., 130, 29–44 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Pechen’, “Engineering arbitrary pure and mixed quantum states,” Phys. Rev. A, 84, No. 6, 042106 (2011).

    Article  Google Scholar 

  24. A. N. Pechen’ and N. B. Il’in, “On the problem of maximizing the probability of transition in n-level quantum system by means of nonselective measurements,” Tr. Mat. Inst. Steklova, 294, 248–255 (2016).

  25. A. Pechen’, N. Ilin, F. Shuang, and H. Rabitz, “Quantum control by von Neumann measurements,” Phys. Rev. A, 74, No. 5, 052102 (2006).

    Article  Google Scholar 

  26. A. Pechen’ and H. Rabitz, “Teaching the environment to control quantum systems,” Phys. Rev. A, 73, No. 4, 062102 (2006).

    Article  Google Scholar 

  27. A. Pechen’ and A. Trushechkin, “Measurement-assisted Landau–Zener transitions,” Phys. Rev. A, 91, No. 5, 052316 (2015).

    Article  Google Scholar 

  28. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, New York (2004).

  29. F. Shuang, A. Pechen’, T.-S. Ho, and H. Rabitz, “Observation-assisted optimal control of quantum dynamics,” J. Chem. Phys., 126, No. 13, 134303 (2007).

    Article  Google Scholar 

  30. H. Spohn, “Entropy production for quantum dynamical semigroups,” J. Math. Phys., 19, No. 5, 1227–1230 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Spohn and J. L. Lebowitz, “Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs,” Adv. Chem. Phys., 38, 109–142 (1978).

    Google Scholar 

  32. A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks,” Europhys. Lett., 113, No. 3, 30005 (2016).

    Article  Google Scholar 

  33. I. V. Volovich and S. V. Kozyrev, “Manipulation of states of a degenerate quantum system,” Tr. Mat. Inst. Steklova, 294, 256–267 (2016).

    MathSciNet  MATH  Google Scholar 

  34. S. Yukawa, The second law of steady state thermodynamics for nonequilibrium quantum dynamics, e-print arxiv.org/abs/cond-mat/0108421.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Trushechkin.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 138, Quantum Computing, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trushechkin, A.S. On the General Definition of the Production of Entropy in Open Markov Quantum Systems. J Math Sci 241, 191–209 (2019). https://doi.org/10.1007/s10958-019-04417-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04417-4

Keywords and phrases

AMS Subject Classification

Navigation