Skip to main content
Log in

A Counterexample Related to the Regularity of the p-Stokes Problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We construct a solenoidal vector field u belonging to \( {W}^{2,q}\left(\Omega \right)\cap {W}_0^{1,s}\left(\Omega \right),q\in \left(1,n\right),s\in \left(1,\infty \right) \), such that (1 + |Du|)p − 2, p ∈ (1, ∞), p ≠ 2, does not belong to the Muckenhoupt class A(Ω). Thus, one cannot use the Korn inequality in weighted Lebesgue spaces to prove the natural regularity of the p-Stokes problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Wiley, New York etc. (1987).

  2. J. Málek, K. R. Rajagopal, and M. Růžička, “Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity,” Math. Models Methods Appl. Sci. 5, No. 6, 789–812 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Málek and K. R. Rajagopal, “Mathematical issues concerning the Navier-Stokes equations and some of its generalizations,” In: Evolutionary Equations. II, pp. 371–459, Elsevier, Amsterdam (2005),

  4. E. Acerbi and N. Fusco, “Regularity for minimizers of nonquadratic functionals: the case 1 < p < 2,” J. Math. Anal. Appl. 140, No. 1, 115–135 (1989).

  5. M. Giaquinta and G. Modica, “Remarks on the regularity of the minimizers of certain degenerate functionals,” Manuscripta Math. 57, No. 1, 55–99 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, Singapore (2003).

  7. P. Kaplický, J. Málek, and J. Stará, “C 1-solutions to a class of nonlinear fluids in two dimensions – stationary Dirichlet problem,” J. Math. Sci., New York 109, No. 5, 1867-1892 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Ebmeyer, “Steady flow of fluids with shear-dependent viscosity under mixed boundary value conditions in polyhedral domains,” Math. Models Methods Appl. Sci. 10, No. 5, 629–650 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Beirão da Veiga, “On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions,” Commun. Pure Appl. Math. 58, No. 4, 552–577 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Ebmeyer, “Regularity in Sobolev spaces of steady flows of fluids with shear-dependent viscosity,” Math. Methods Appl. Sci. 29, No. 14, 1687–1707 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Beirão da Veiga, “On the Ladyzhenskaya–Smagorinsky turbulence model of the Navier–Stokes equations in smooth domains. The regularity problem,” J. Eur. Math. Soc. 11, No. 1, 127–167 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Crispo and C. R. Grisanti, “On the existence, uniqueness and \( {C}^{1,\upgamma}\left(\overline{\Omega}\right)\cap {W}^{2,2}\left(\Omega \right) \) regularity for a class of shear-thinning fluids,” J. Math. Fluid Mech. 10, No. 4, 455–487 (2008).

  13. H. Beirão da Veiga, “Turbulence models, p-fluid flows, and W 2,l-regularity of solutions,” Commun. Pure Appl. Anal. 8, No. 2, 769–783 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Crispo, “A note on the global regularity of steady flows of generalized Newtonian fluids,” Port. Math. 66, No. 2, 211–223 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Beirão da Veiga, “Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary,” J. Math. Fluid Mech. 11, No. 2, 258–273 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Beirão da Veiga, “On the global regularity of shear thinning flows in smooth domains,” J. Math. Anal. Appl. 349, No. 2, 335–360 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. C. Berselli, “On the W 2,q-regularity of incompressible fluids with shear-dependent viscosities: the shear-thinning case,” J. Math. Fluid Mech. 11,, No. 2, 171–185 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Beirão da Veiga, P. Kaplický, and M. Růžička, “Boundary regularity of shear thickening flows,” J. Math. Fluid Mech. 13, No. 3, 387–404 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. C. Berselli and M. Růžička, “Global regularity properties of steady shear thinning flows,” J. Math. Anal. Appl. 450, No. 2, 839–871 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. A. Seregin and T. N. Shilkin, “Regularity for minimizers of some variational problems in plasticity theory,” J. Math. Sci., New York 99, No. 1, 969–988 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Crispo and P. Maremonti, “A high regularity result of solutions to modified p-Stokes equations,” Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 118, 97–129 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Nečas, “Sur le normes équivalentes dans \( {W}_p^k\left(\Omega \right) \) et sur la coercivité des formes formellement positives,” Sémin. Équ. Dériv. Partielles 317, 102–128 (1966).

  23. L. Diening, M. Růžička, and K. Schumacher, “A decomposition technique for John domains,” Ann. Acad. Sci. Fenn., Math. 35, No. 1, 87–114 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Muckenhoupt, “Weighted norm inequalities for the Hardy maximal function,” Trans. Am. Math. Soc. 165, 207–226 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  25. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL (1992).

  26. C. Amrouche and V. Girault, “Problèmes généralisés de Stokes,” Port. Math. 49, No. 4, 463–503 (1992).

    MATH  Google Scholar 

  27. C. Bär, Elementary Differential Geometry, Cambridge Univ. Press, Cambridge (2010).

  28. L. C. Berselli, L. Diening, and M. Růžička, “Existence of strong solutions for incompressible fluids with shear dependent viscosities,” J. Math. Fluid Mech. 12,, No. 1, 101–132 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Růžička.

Additional information

Dedicated to V. V. Zhikov

Translated from Problemy Matematicheskogo Analiza 92, 2018, pp. 159-168.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Křepela, M., Růžička, M. A Counterexample Related to the Regularity of the p-Stokes Problem. J Math Sci 232, 390–401 (2018). https://doi.org/10.1007/s10958-018-3879-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3879-9

Navigation