Skip to main content
Log in

On Boundedness of Bergman Projection Operators in Banach Spaces of Holomorphic Functions in Half-Plane and Harmonic Functions in Half-Space

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We present a simple proof of the boundedness of holomorphic and harmonic Bergman projection operators on a half-plane and a half-space respectively on the Orlicz space, the variable exponent Lebesgue space, and the variable exponent generalized Morrey space. The approach is based on an idea due to V. P. Zaharyuta and V. I. Yudovich (1962) to use Calderón–Zygmund operators for proving the boundedness of the Bergman projection in Lebesgue spaces on the unit disc. We also study the rate of growth of functions near the boundary in the spaces under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bergman, Über der Kernfunktion eines Bereiches und ihr Verhalten am Rande. I,” J. Reine Agnew. Math. 169, 1–42 (1932).

    MATH  Google Scholar 

  2. M. M. Dzherbashyan, “On canonical representation of functions meromorphic in the unit disc” [in Russian], Dokl. Akad. Nauk ArmSSR 3, 3–9 (1945).

  3. M. M. Dzherbashyan, “On the representability problem for analytic functions” [in Russian], Soobshch. Inst. Mat. Mekh. Akad. Nauk ArmSSR 2, 3–55 (1948).

  4. S. Bergman, The Kernel Function and Conformal Mapping, Am. Math. Soc., Providence, RI (1970).

    MATH  Google Scholar 

  5. H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Springer, New York (2000).

    Book  MATH  Google Scholar 

  6. P. Duren and A. Schuster, Bergman Spaces, Am. Math. Soc., Providence, RI (2004).

    Book  MATH  Google Scholar 

  7. K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York (2004).

    Google Scholar 

  8. K. Zhu, Operator Theory in Function Spaces, Am. Math. Soc., Providence, RI (2007).

    Book  MATH  Google Scholar 

  9. N. L. Vasilevski, Commutative Algebras of Toeplitz Operators on the Bergman Space, Birkhäuser, Basel (2008).

    MATH  Google Scholar 

  10. R. R. Coifman, R. Rochberg, M. H. Taibleson, G. L. Weiss, Representation Theorems for Holomorphic and Harmonic Functions in L p, Soc. Math. France (1980).

    Google Scholar 

  11. D. Békollé, A. Bonami. G. Garrigós, C. Nana, M. Peloso, and F. Ricci, “Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint,” IMHOTEP, J. Afr. Math. Pures Appl. 5, Ex. I (2004).

  12. S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Springer, New York (2001).

    Book  MATH  Google Scholar 

  13. K. Stroethoff, “Harmonic Bergman spaces”, In: Holomorphic Spaces, pp. 51–63, Cambridge Univ. Press, Cambridge (1998).

  14. W. C. Ramey and H. Yi, “Harmonic Bergman functions on half-spaces,” Trans. Am. Math. Soc. 348, No. 2, 633-660 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  15. B. R. Choe and H. Yi, “Representations and interpolations of harmonic Bergman functions on half-spaces,” Nagoya Math. J. 151, 51–89 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. P. Zaharyuta and V. I. Yudovich, “The general form of a linear functional in \( {H}_p^{\prime } \)” [in Russian], Usp. Mat. Nauk 19, No. 2, 139–142 (1964).

  17. A. Stefanov and R. H. Torres, “Calderón–Zygmund operators on mixed Lebesgue spaces and applications to null forms,” J. Lond. Math. Soc., II 70, No. 2, 447-462 (2004).

    Article  MATH  Google Scholar 

  18. A. N. Karapetyants and S. G. Samko, “Spaces BMO p(z) (D) with variable exponent,” Georgian Math. J. 17, No. 3, 529–542 (2010).

    MathSciNet  MATH  Google Scholar 

  19. G. R. Chacón and H. Rafeiro, “Variable exponent Bergman spaces,” Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105, 41–49 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. R. Chacón and H. Rafeiro, “Toeplitz operators on variable exponent Bergman spaces,” Mediterr. J. Math. 13, No. 5, 3525–3536 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Karapetyants and S. Samko, “Mixed norm variable exponent Bergman space on the unit disc,” Complex Var. Elliptic Equ. 61, No. 8, 1090-1106 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Karapetyants and S. Samko, “Mixed norm Bergman–Morrey type spaces on the unit disc,” Math. Notes 100, No. 1, 38–48 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkhäuser/Springer, New York (2013).

    Book  MATH  Google Scholar 

  24. L. Diening, P. Harjulehto, P. Hasto, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg (2011).

    Book  MATH  Google Scholar 

  25. V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko, Integral Operators in Non-Standard Function Spaces. I: Variable Exponent Lebesgue and Amalgam Spaces, Birkhäuser/Springer, Basel (2016).

    MATH  Google Scholar 

  26. V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko, Integral Operators in Non-Standard Function Spaces. II: Variable Exponent Hölder, Morrey–Campanato and Grand Spaces, Birkhäuser/Springer, Basel (2016).

    MATH  Google Scholar 

  27. M. A. Krasnosel’skij and Ya. B. Rutitskij, Convex Functions and Orlicz Spaces, Noordhoff, Groningen (1961)

    MATH  Google Scholar 

  28. M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Marcel Dekker, New York etc. (1991).

    MATH  Google Scholar 

  29. L. Pick, A. Kufner, O. John, and S. Fučik, Function Spaces. I, De Gruyter, Berlin (2013).

    MATH  Google Scholar 

  30. A. Kufner, O. John, and S. Fučik, Function Spaces, Czech. Acad. Sci., Prague (1977).

    MATH  Google Scholar 

  31. H. Triebel, Local Function Spaces, Heat and Navier–Stokes Equations, Eur. Math. Soc., Zürich (2013).

    Book  MATH  Google Scholar 

  32. M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, NJ (1977).

    Google Scholar 

  33. H. Rafeiro, N. Samko, and S. Samko, “Morrey-Campanato spaces: an overview,” In: Operator Theory, Pseudo-Differential Equations, and Mathematical Physics. The Vladimir Rabinovich Anniversary Volume, pp. 293–323, Birkäuser/Springer, Basel (2013).

  34. A. Almeida, J. Hasanov, and S. Samko, “Maximal and potential operators in variable exponent Morrey spaces,” Georgian Math. J. 15, No. 2, 195–208 (2008).

    MathSciNet  MATH  Google Scholar 

  35. V. S. Guliyev and S. G. Samko, “Maximal, potential, and singular operators in the generalized variable exponent Morrey spaces on unbounded sets,” J. Math. Sci., New York 193, No. 2, 228–248 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Diening and M. Růžička, “Calderón–Zygmund operators on generalized Lebesgue spaces L p(·) and problems related to fluid dynamics,” J. Reine Angew. Math. 563, 197–220 (2003).

    MathSciNet  MATH  Google Scholar 

  37. V. Kokilashvili and M. M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Scientific, Singapore etc. (1991).

  38. C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston etc. (1988).

  39. P. Liu, Y. Hou, and M. Wang, “Weak Orlicz space and its applications to the martingale theory,” Sci. China, Math. 53, No. 4, 905–916 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Karapetyants.

Additional information

Translated from Problemy Matematicheskogo Analiza 89, July 2017, pp. 11-20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karapetyants, A., Samko, S. On Boundedness of Bergman Projection Operators in Banach Spaces of Holomorphic Functions in Half-Plane and Harmonic Functions in Half-Space. J Math Sci 226, 344–354 (2017). https://doi.org/10.1007/s10958-017-3538-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3538-6

Navigation