Skip to main content
Log in

Boundedness of the Bergman Projection and Some Properties of Bergman Type Spaces

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We give a simple proof of the boundedness of Bergman projection in various Banach spaces of functions on the unit disc in the complex plain. The approach of the paper is based on the idea of Zaharyuta and Yudovich (Uspekhi Mat Nauk 19(2):139–142, 1964) where the boundedness of the Bergman projection in Lebesgue spaces was proved using Calderón–Zygmund operators. We exploit this approach and treat the cases of variable exponent Lebesgue space, Orlicz space and variable exponent generalized Morrey spaces. In the case of variable exponent Lebesgue space the boundedness result is known, so in that case we provide a simpler proof, whereas the other cases are new. The major idea of this paper is to show that the approach can be applied to a wide range of function spaces. We also study the rate of growth of functions near the boundary in spaces under consideration and their approximation by mollified dilations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleman, A., Pott, S., Reguera, M.C.: Sarason conjecture on the Bergman space. In: International Mathematics Research Notices (2016), rnw134

  2. Bekolle, D., Bonami, A.: Inegalites a poids pour le noyau de Bergman. CR Acad. Sci. Paris Ser. AB 286(18), 775–778 (1978)

    MathSciNet  MATH  Google Scholar 

  3. Zaharyuta, V.P., Yudovich, V.I.: The general form of a linear functional in \(H_p^{\prime }\). 19(2), 139–142 (1964)

  4. Milutin, D.: Boundedness of the Bergman projections on \(L^p\) spaces with radial weights. Publ. de l’Institut Math. 86(100), 5–20 (2009)

    Article  MATH  Google Scholar 

  5. Guliyev, V.S., Hasanov, J.J., Samko, S.G.: Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces. Math. Scand. 107, 285–304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diening, L., Ruzichka, M.: Calderón–Zygmund operators on generalized Lebesgues spaces \(L^{p(\cdot )}\) and problems related to fluid dynemics. J. Reine Angew. Math. 563, 197–220 (2003)

    MathSciNet  Google Scholar 

  7. Chacón, G.R., Rafeiro, H.: Variable exponent Bergman spaces. Nonlinear Anal.: Theory Methods Appl. 105, 41–49 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chacón, G.R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces. Mediterr. J. Math. 13(5), 3525–3536 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Almeida, A., Hasanov, J., Samko, S.: Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J. 15, 195–208 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Kokilashvili, H., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Vol. I: Variable Exponent Lebesgue and Amalgam Spaces. Birkhäuser Basel: Operator Theory: Advances and Applications; (2016)

  11. Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Vol. II: Variable Exponent Hölder, Morrey–Campanato and Grand Spaces. Birkhäuser Basel: Operator Theory: Advances and Applications (2016)

  12. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)

    MATH  Google Scholar 

  13. Liu, P.D., Hou, Y.L., Wang, M.F.: Weak Orlicz space and its applications to the martingale theory. Sci. China Math. 53(4), 905–916 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gallardo, D.: Orlicz spaces for which the Hardy–Littlewood maximal operator is bounded. Publ. Mat. Barc. 32(2), 261–266 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents, vol. 2017. Springer, Heidelberg, Lecture Notes in Mathematics (2011)

  16. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Applied and Numerical Harmonic Analysis, Foundations and Harmonic Analysis. Springer, Basel (2013)

  17. Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Springer, New York (2000)

    Book  MATH  Google Scholar 

  18. Duren, P., Schuster, A.: Bergman Spaces, Providence, RI, Mathematical Surveys and Monographs, 100 (2004)

  19. Zhu, K.: Spaces of Holomorphic Functions in The Unit Ball. Springer, Graduate texts in Mathematics (2004)

  20. Zhu, K.: Operator Theory in Function Spaces, AMS Mathematical Surveys and Monographs, vol. 138 (2007)

  21. Triebel, H.: Local Function Spaces, Heat and Navier–Stokes Equations. EMS Tracts in Mathematics Vol. 20 (2013)

  22. Pick, L., Kufner, A., John, O., Fucik, S.: Function Spaces, 1. De Gruyter Series in Nonlinear Analysis and Applications 14 (2013)

  23. Rafeiro, H., Samko, N., Samko, S.: Morrey-Campanato Spaces: an Overview, Operator Theory: Advances and Applications, vol. 228, pp. 293–323. Springer, Basel (2013)

    MATH  Google Scholar 

  24. Kufner, A., John, O., Fucik, S.: Function Spaces, Leyden, Noordhoff International Publishing. Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis (1977)

  25. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princenton, NJ, Annals of Mathematics Studies, vol. 105. Princenton University Press, Princenton (1977)

    Google Scholar 

  26. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146. Marcel Dekker, NY (1991)

    Google Scholar 

  27. Kokilashvili, V., Krbec, M.M.: Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific, Singapore (1991)

    Book  MATH  Google Scholar 

  28. Krasnoselskii, M.A., Rutitski, Ya.B.: Convex Functions and Orlicz Spaces. Translated from the First Russian Edition. Noordhoff, Groningen (1961)

Download references

Acknowledgements

A. Karapetyants was partially supported by Southern Federal University Project No. 07/2017-31 and partially supported by the Grant 18-51-05009-Apm_a of Russian Foundation of Basic Research. H. Rafeiro was partially supported by Pontificia Universidad Javeriana. S. Samko was partially supported by the RFBR Grant 15-01-02732 and partially supported by the Grant 18-01-00094-a of Russian Foundation of Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Karapetyants.

Additional information

Communicated by Ahmed Sebbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karapetyants, A., Rafeiro, H. & Samko, S. Boundedness of the Bergman Projection and Some Properties of Bergman Type Spaces. Complex Anal. Oper. Theory 13, 275–289 (2019). https://doi.org/10.1007/s11785-018-0780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-018-0780-y

Keywords

Mathematics Subject Classification

Navigation