Skip to main content
Log in

Argument Shift Method and Sectional Operators: Applications to Differential Geometry

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper is an attempt to present, in a systematic way, a construction that establishes an interesting relationship between some ideas and notions well known in the theory of integrable systems on Lie algebras and a rather different area of mathematics studying projectively equivalent Riemannian and pseudo-Riemannian metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Alekseevskii, “Riemannian spaces with unusual holonomy groups,” Funct. Anal. Appl., 2, 97–105 (1968).

    Article  MathSciNet  Google Scholar 

  2. A. V. Aminova, “Projective transformations of pseudo-Riemannian manifolds,” J. Math. Sci., 113, No. 3, 367–470 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Bérard-Bergery and A. Ikemakhen, “On the holonomy of Lorentzian manifolds,” in: Differential Geometry: Geometry in Mathematical Physics and Related Topics (Los Angeles, CA, 1990 ), Proc. Sympos. Pure Math., Vol. 54, Amer. Math. Soc., Providence, RI (1993), pp. 27–39.

  4. M. Berger, “Sur les groupes d’holonomie des variétés à connexion affine et des variétés Riemanniennes,” Bull. Soc. Math. Fr., 83, 279–330 (1955).

    Article  MATH  Google Scholar 

  5. A. M. Bloch, V. Brinzanescu, A. Iserles, J. E. Marsden, and T. S. Ratiu, “A class of integrable flows on the space of symmetric matrices,” Commun. Math. Phys., 290, 399–435 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. O. I. Bogoyavlensky, “Integrable Euler equations on Lie algebras, arising in problems of mathematical physics,” Izv. Akad. Nauk SSSR, Ser. Mat., 48, No. 5, 883–938 (1984).

    MathSciNet  Google Scholar 

  7. A. V. Bolsinov, “Commutative families of functions related to consistent Poisson brackets,” Acta Appl. Math., 24, 253–274 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. V. Bolsinov and A. V. Borisov, “Compatible Poisson Brackets on Lie Algebras,” Math. Notes, 72, No. 1, 10–30 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. V. Bolsinov and A. Yu. Konyaev, “Algebraic and geometric properties of quadratic Hamiltonians determined by sectional operators,” Math. Notes, 90, No. 5-6, 666–677 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. V. Bolsinov, V. Kiosak, and V. S. Matveev, “A Fubini theorem fro pseudo-Riemannian geodesically equivalent metrics,” J. London Math. Soc. (2), 80, 341–356 (2009).

  11. A. V. Bolsinov and V. S. Matveev, “Geometrical interpretation of Benenti systems,” J. Geom. Phys., 44, 489–506 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. V. Bolsinov and V. S. Matveev, “Splitting and gluing lemmas for geodesically equivalent pseudo-Riemannian metrics,” Trans. Am. Math. Soc., 363, No. 8, 4081–4107 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. V. Bolsinov and V. S. Matveev, Local Normal Forms for Geodesically Equivalent Pseudo-Riemannian Metrics, arXiv:1301.2492v2 (2013).

  14. A. V. Bolsinov, V. S. Matveev, and S. Rosemann, Local Normal Forms for c-Projectively Equivalent Metrics and Proof of the Yano–Obata Conjecture in Arbitrary Signature. Proof of the Projective Lichnerowicz Conjecture for Lorentzian Metrics, arXiv:1510.00275v1 (2015).

  15. A. Bolsinov and D. Tsonev, “On a new class of holonomy groups in pseudo-Riemannian geometry,” J. Differ. Geom., 97, 377–394 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Boubel, The Algebra of the Parallel Endomorphisms of a Germ of Pseudo-Riemannian Metric, arXiv:1207.6544v5 (2013).

  17. C. Boubel, “On the algebra of parallel endomorphisms of a pseudo-Riemannian metric,” J. Differ. Geom., 99, No. 1, 77–123 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Boubel, “On the holonomy of Lorentzian metrics,” Ann. Fac. Sci. Toulouse Math., 16, No. 3, 427–475 (2007); ENS Lyon preprint No. 323 (2004).

  19. R. Bryant, “A survey of Riemannian metrics with special holonomy groups,” in: Proc. ICM Berkeley, Amer. Math. Soc. (1987), pp. 505–514.

  20. R. Bryant, “Metrics with exceptional holonomy,” Ann. Math., 126, 525–576 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Bryant, “Classical, exceptional, and exotic holonomies: A status report,” in: A. L. Besse, ed., Actes de la table ronde de géométrie différentielle en l’honneur de Marcel Berger, Luminy, France, 12–18 juillet 1992, Sémin. Congr., Vol. 1, Soc. Math. France, Paris (1996), pp. 93–165.

  22. É. Cartan, “Les groupes d’holonomie des espaces généralisés,” Acta Math., 48, 1–42 (1926); in: Oeuvres complétes, tome III, vol. 2, pp. 997–1038.

  23. É. Cartan, “Sur une classe remarquable d’espaces de Riemann,” Bull. Soc. Math. Fr., 54, 214–264 (1926); 55, 114–134 (1927); in: Oeuvres complétes, tome I, vol. 2, pp. 587–659.

  24. V. V. Domashev and J. Mikes, “On the theory of holomorphically projective mappings of Kählerian spaces,” Mat. Zametki, 23, No. 2, 297–303 (1978).

    MathSciNet  MATH  Google Scholar 

  25. A. T. Fomenko, Symplectic Geometry. Methods and Applications, Gordon and Breach, Amsterdam (1995).

    MATH  Google Scholar 

  26. A. T. Fomenko and V. V. Trofimov, Integrable Systems on Lie Algebras and Symmetric Spaces, Gordon and Breach, Amsterdam (1988).

    MATH  Google Scholar 

  27. G. Fubini, “Sui gruppi transformazioni geodetiche,” Mem. Acc. Torino, 53, 261–313 (1903).

    MATH  Google Scholar 

  28. G. Fubini, “Sulle coppie di varietà geodeticamente applicabili,” Rend. Acc. Lincei, 14, 678–683 (1° Sem.); 315–322 (2° Sem.) (1905).

  29. A. S. Galaev, Classification of Connected Holonomy Groups of Pseudo-Kählerian Manifolds of Index 2, arXiv:math.DG/0405098v2 (2005).

  30. A. Galaev, “The space of curvature tensors for holonomy algebras of Lorentzian manifolds,” Differ. Geom. Appl., 22, No. 1, 1–18 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Galaev, “Metrics that realize all Lorentzian holonomy algebras,” Int. J. Geom. Methods Mod. Phys., 3, No. 5–6, 1025–1045 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  32. A. S. Galaev and T. Leistner, “Holonomy groups of Lorentzian manifolds: classification, examples, and applications,” in: D. V. Alekseevsky and H. Baum, eds., Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich (2008), pp. 53–96.

  33. V. I. Golikov, “Geodesic mappings of gravitational fields of general type,” Tr. Sem. Vektor. Tenzor. Anal., 12, 79–129 (1963).

    MathSciNet  Google Scholar 

  34. A. Ikemakhen, “Examples of indecomposable non-irreducible Lorentzian manifolds,” Ann. Sci. Math. Québec, 20, No. 1, 53–66 (1996).

    MathSciNet  MATH  Google Scholar 

  35. D. Joyce, “Compact Riemannian 7-manifolds with holonomy G 2. I,” J. Differ. Geom., 43, 291–328 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Joyce, “Compact Riemannian 7-manifolds with holonomy G 2. II,” J. Differ. Geom., 43, 329–375 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Joyce, “A new construction of compact 8-manifolds with holonomy Spin(7),” J. Differ. Geom., 53, 89–130 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Yu. Konyaev, “The bifurcation diagram and discriminant of a spectral curve of integrable systems on Lie algebras,” Sb. Math., 201, No. 9-10, 1273–1305 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Yu. Konyaev, “Uniqueness of the reconstruction of the parameters of sectional operators on simple complex Lie algebras,” Math. Notes, 90, No. 3-4, 365–372 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Lancaster and L. Rodman, “Canonical forms for Hermitian matrix pairs under strict equivalence and congruence,” SIAM Rev., 47, 407–443 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  41. D. B. Leep and L. M. Schueller, “Classification of pairs of symmetric and alternating bilinear forms,” Expos. Math., 17, No. 5, 395–414 (1999).

    MathSciNet  MATH  Google Scholar 

  42. T. Leistner, “On the classification of Lorentzian holonomy groups,” J. Differ. Geom., 76, No. 3, 423–484 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Levi-Civita, “Sulle trasformazioni delle equazioni dinamiche,” Ann. Mat. Pura Appl., Ser. 2a, 24, 255–300 (1896).

  44. S. V. Manakov, “Note on the integration of Euler’s equation of the dynamics of an N-dimensionalrigid body,” Funct. Anal. Appl., 11, 328–329 (1976).

    MATH  Google Scholar 

  45. V. S. Matveev and P. J. Topalov, “Trajectory equivalence and corresponding integrals,” Regular and Chaotic Dynamics, 3, No. 2, 30–45 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  46. V. S. Matveev and P. J. Topalov, “Geodesic equivalence via integrability,” Geom. Dedicata, 96, 91–115 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  47. J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer, New York (1999).

    Book  MATH  Google Scholar 

  48. S. Merkulov and L. Schwachhöfer, “Classification of irreducible holonomies of torsion-free affine connections,” Ann. Math., 150, 77–149 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  49. A. S. Mishchenko and A. T. Fomenko, “Euler equations on finite-dimensional Lie groups,” Math. USSR-Izv., 12, No. 2, 371–389 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  50. A. S. Mishchenko and A. T. Fomenko, “Integrability of Euler equations on semisimple Lie algebras,” Selecta Math. Sov., 2, No. 4, 207–291 (1982).

    MATH  Google Scholar 

  51. A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Vol. I, Birkhäuser, Basel (1990).

    Book  MATH  Google Scholar 

  52. A. Z. Petrov, “Geodesic mappings of Riemannian spaces of an indefinite metric,” Uchen. Zap. Kazan. Univ., 109, No. 3, 7–36 (1949).

    Google Scholar 

  53. A. G. Reyman and M. A. Semenov-Tian-Shansky, Integrable Systems. A Group Theoretic Approach [in Russian], Inst. Comput. Sci., Moscow, Izhevsk (2003).

    Google Scholar 

  54. N. S. Sinjukov, Geodesic Mappings of Riemannian Spaces [in Russian], Nauka, Moscow (1979).

    MATH  Google Scholar 

  55. L. Schwachhöfer, “Connections with irreducible holonomy representations,” Adv. Math., 160, No. 1, 1–80 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  56. A. P. Shirokov, “On a property of covariantly constant affinors,” Dokl. Akad. Nauk SSSR, 102, 461–464 (1955).

    MathSciNet  Google Scholar 

  57. A. S. Solodovnikov, “Projective transformations of Riemannian spaces,” Usp. Mat. Nauk, 11, No. 4 (70), 45–116 (1956).

  58. V. V. Trofimov and A. T. Fomenko, “Dynamical systems on the orbits of linear representations of Lie groups and the complete integrability of certain hydrodynamical systems,” Funct. Anal. Appl., 17, 2–29 (1983).

    Article  MATH  Google Scholar 

  59. V. V. Trofimov and A. T. Fomenko, “Non-invariant symplectic group structures and Hamiltonian flows on symmetric spaces,” Selecta Math. Sov., 7, No. 4, 356–414 (1988).

    MATH  Google Scholar 

  60. V. V. Trofimov and A. T. Fomenko, Algebra and Geometry of Integrable Hamiltonian Differential Equations [in Russian], Faktorial, Moscow (1995).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bolsinov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 20, No. 3, pp. 5–31, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolsinov, A.V. Argument Shift Method and Sectional Operators: Applications to Differential Geometry. J Math Sci 225, 536–554 (2017). https://doi.org/10.1007/s10958-017-3476-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3476-3

Navigation