Skip to main content
Log in

Introduction to Sublinear Analysis — 2: Symmetric Case

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The advanced theory of the first and higher symmetric Fréchet differentials and K-sub-differentials is constructed including the mean value theorem and the Taylor formula. We give simple sufficient conditions for symmetric K-subdifferentiability and consider some applications to Fourier series and variational functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Baran, “Symmetric compact subdifferentials of the second order and their application to Fourier series,” Dinam. Sist., 3 (31), No. 3-4, 201–214 (2013).

  2. I. V. Baran, “Symmetric compact subdifferentials of the first order,” Nauchn. Zap. Tavr. Nat. Inst. Verndadskogo. Ser. Fiz.-Mat. Nauki, 26 (65), No. 1, 16–30 (2013).

  3. I. V. Baran, “Mean value theorem and Taylor’s formula for symmetric derivatives and symmetric K-subdifferentials,” Nauchn. Zap. Tavr. Nat. Inst. Verndadskogo. Ser. Fiz.-Mat. Nauki, 27(66), No. 1, 3–20 (2014)

  4. N. K. Bari, Trigonometric Series [in Russian], Fizmatlit, Moscow (1961).

  5. E. K. Basaeva, “On subdifferentials of not everywhere defined convex operators,” Vladikavkaz. Mat. Zh., 8, No. 4, 6–12 (2006).

    MathSciNet  MATH  Google Scholar 

  6. D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, Belmont (2003).

    MATH  Google Scholar 

  7. H. Cartan, Differential Calculus. Differential forms [Russian transl.], Mir, Moscow (1971).

  8. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York (1983).

  9. Ch. J. de la Vallee Poussin, “Sur l’approximation des fonctions d’une variable réelle et de leurs derivées par les polynomes et des suites limitées de Fourier,” Bull. Acad. de Belgique, 3, 193–254 (1908).

    MATH  Google Scholar 

  10. V. F. Demyanov and A. M. Rubinov, Foundations of Nonsmooth Analysis, and Quasidifferential Calculus [in Russian], Nauka, Moscow (1990).

  11. V. F. Demyanova and V. A. Roshchina “Generalized subdifferentials and exhausters,” Vladikavkaz. Mat. Zh., 8, No. 4, 19–31 (2006).

    MathSciNet  MATH  Google Scholar 

  12. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland Publishing Company, Amsterdam–Oxford (1976).

    MATH  Google Scholar 

  13. G. M. Fichtenholz, A Course of Differential and Integral Calculus. Vol. 1 [in Russian], Fizmatlit, Moscow (2001).

  14. E. Goursat, Course d’Analyse Mathématique (in 3 volumes), Gauthier–Villars, Paris (1902–1913).

  15. A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).

  16. R. D. James, “Generalized nth primitives,” Trans. Am. Math. Soc., 76, No. 1, 149–176 (1954).

    MATH  Google Scholar 

  17. Z. I. Khalilova, “K-sublinear multivalued operators and their properties,” Nauchn. Zap. Tavr. Nat. Inst. Verndadskogo. Ser. Fiz.-Mat. Nauki, 24(63), No. 3, 110–122 (2011).

  18. Z. I. Khalilova, “Application of compact subdifferentials in Banach spaces to variational functionals,” Nauchn. Zap. Tavr. Nat. Inst. Verndadskogo. Ser. Fiz.-Mat. Nauki, 25(64), No. 2, 140–160 (2012).

  19. Z. I. Khalilova, “Compact subdifferentials of higher order and their application to variational problems,” Dinam. Sist., 2(30), No. 3-4, 115–133 (2012).

  20. Z. I. Khalilova, Compact Subdifferentials in Banach Cones and Applications to Variational Calculus [in Russian], Ph.D. thesis, Simferopol (2014).

  21. A. G. Kusraev and S. S. Kutateladze, “Local convex analysis,” Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 19, 155–206 (1982).

    MathSciNet  MATH  Google Scholar 

  22. V. L. Levin, “Subdifferentials of convex functionals,” Uspekhi Mat. Nauk, 25, No. 4(154), 183-184 (1970).

  23. I. P. Natanson, Theory of Functions of a Real Variable [in Russian], Nauka, Moscow (1974).

  24. I. V. Orlov, “Introduction to sublinear analysis,” Sovrem. Mat. Fundam. Napravl., 53, 64–132 (2014).

    Google Scholar 

  25. I. V. Orlov and Z. I. Khalilova, “Compact subdifferentials in Banach cones,” J. Math. Sci., 198, No. 4, 438–456 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  26. I. V. Orlov and Z. I. Khalilova, “Compact subdifferentials in Banach spaces and their applications to variational functionals,” J. Math. Sci., 211, No. 4, 542–578 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  27. I. V. Orlov and F. S. Stonyakin, “Compact variation, compact subdifferentiability, and indefinite Bochner integral,” Methods Funct. Anal. Topology, 15, No. 1, 74–90 (2009).

    MathSciNet  MATH  Google Scholar 

  28. I. V. Orlov and F. S. Stonyakin, “Compact subdifferentials: the formula of finite increments and related topics,” J. Math. Sci., 170, No. 2, 251–269 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  29. I. V. Orlov and F. S. Stonyakin, “The limiting form of the Radon–Nikodym property is true for all Fréchet spaces,” J. Math. Sci., 180, No. 6, 731–747 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  30. E. S. Polovinkin and M. V. Balashov, Elements of Convex and Strongly Convex Analysis [in Russian], Fizmatlit, Moscow (2007).

  31. I. M. Prudnikov, “Integral approximations of nonsmooth functions preserving local extrema points” Vestn. Saint-Petersburg Univ. Ser. 10. Appl. Math. Computer Sci. Control Processes, No. 2, 70–83 (2010).

  32. B. N. Pshenichny, Convex Analysis and Extremal Problems [in Russian], Nauka, Moscow (1980).

  33. Yu. G. Reshetnyak, “Extremum conditions for a class of variational functionals with nonsmooth integrand,” Sib. Math. J., 28, No. 7, 936–945 (1987).

    MathSciNet  MATH  Google Scholar 

  34. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton New Jersey (1970).

    Book  MATH  Google Scholar 

  35. S. Saks, Theory of the Integral, Dover, New York (1964).

    MATH  Google Scholar 

  36. F. S. Stonyakin, “ Analog of Denjoy–Yuong–Saks theorem on contingency for mappings into Frechet spaces and one of its applications in vector integration theory,” Trans. IAMM NAS Ukr., 20, 168–176 (2010).

    MathSciNet  MATH  Google Scholar 

  37. F. S. Stonyakin, Compact Characteristics of Mappings and Application to Bochner Integral in Locally Convex Spaces [in Russian], Ph.D. thesis, Simferopol (2011).

  38. V. M. Tikhomirov “Convex analysis,” Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 14, 5–101 (1987).

    MathSciNet  MATH  Google Scholar 

  39. A. Zygmund, Trigonometric Series. Vol. 2 [Russian transl.], Mir, Moscow (1965).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Orlov.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 57, Proceedings of the Crimean Autumn Mathematical School-Symposium KROMSH–2014, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, I.V., Baran, I.V. Introduction to Sublinear Analysis — 2: Symmetric Case. J Math Sci 225, 265–321 (2017). https://doi.org/10.1007/s10958-017-3471-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3471-8

Navigation