Skip to main content
Log in

Introduction to Sublinear Analysis

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Basing on the notion of compact subdifferentials, we develop a subdifferential calculus of the first and the second orders beyond the Taylor expansion and extremum theory. We introduce and investigate a comprehensive class of subsmooth maps such that the constructed theory is applicable to them. We develop a technique to investigate one-dimensional extremal variational problems with subsmooth Lagrangians (including sufficient conditions). A number of examples are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.K. Basaeva, “On subdifferentials of convex operators defined not everywhere,” Vladikavkaz. Mat. Zh., 8, No. 4, 6–12 (2006).

    MathSciNet  MATH  Google Scholar 

  2. D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, Belmont (2003).

  3. V. I. Blagodatskih, Introduction to Optimization [in Russian], Vyssh. Shkola, Moscow (2001).

  4. F. Clarke, Optimization and Nonsmooth Analysis [Russian translation], Nauka, Moscow (1988).

  5. V. F. Dem’yanov, Extremum Conditions and Variational Problems [in Russian], Chem. Inst. St. Petersburg State Univ., St. Petersburg (2000).

  6. V. F. Dem’yanov and V.A. Roshchina, “Generalized subdifferentials and exhausters,” Vladikavkaz. Mat. Zh., 8, No. 4, 19–31 (2006).

    MathSciNet  MATH  Google Scholar 

  7. V. F. Dem’yanov and A.M. Rubinov, Foundations of Nonsmooth Analysis. Quasidifferential Calculus [in Russian], Nauka, Moscow (1990).

  8. A. V. Dmitruk, Convex Analysis. Elementary Introductory Course [in Russian], CMC Fac. Moscow State Univ., Moscow (2012).

  9. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland Publishing Company and American Elsevier Publishing Company, Amsterdam–Oxford–New York (1976).

  10. B. Fuchssteiner and W. Lusky, Convex Cones, North-Holland Publishing Company, Amsterdam–New York–Oxford (1981).

  11. A. D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems, North-Holland Publishing Company, Amsterdam–New York–Oxford (1979).

  12. K. Keimel and W. Roth, Ordered Cones and Approximation, Springer, Heidelberg–Berlin–New York (1992).

  13. Z. I. Khalilova, “K-sublinear multivalued operators and their properties,” Uch. Zap. Vernadskii Tavria Nat. Univ. Ser. Fiz.-Mat. Nauki, 24 (63), No. 3, 110–122 (2011).

  14. Z. I. Khalilova, “Applications of compact subdifferentials in Banach spaces to variational functionals,” Uch. Zap. Vernadskii Tavria Nats. Univ. Ser. Fiz.-Mat. Nauki, 25 (64), No. 2, 140–160 (2012).

  15. Z. I. Khalilova, “Higher-order compact subdifferentials and their applications to variational problems,” Din. Sist., 3 (31), No. 1-2, 115–134 (2013).

  16. A. G. Kusraev and S. S. Kutateladze, “Local convex analysis,” Itogi Nauki Tekh. Sovrem. Probl. Mat., 19, 155–206 (1982).

    MathSciNet  MATH  Google Scholar 

  17. S. S. Kutateladze, “Convex operators,” Usp. Mat. Nauk, 34, No. 1, 167–196 (1979).

    MathSciNet  MATH  Google Scholar 

  18. V. L. Levin, “Subdifferentials of convex functionals,” Usp. Mat. Nauk, 25, No. 4, 183–184 (1970).

    MathSciNet  Google Scholar 

  19. Yu. ´E. Linke, “Application of Michael’s theorem and its converse to sublinear operators,” Math. Notes, 52, No. 1-2, 680–686 (1992).

  20. Yu. ´E. Linke, “Conditions for the extension of bounded linear and sublinear operators with values in Lindenstrauss spaces,” Sib. Math. J., 51, No. 6, 1061–1074 (2010).

  21. Yu. ´E. Linke, “Universal spaces of subdifferentials of sublinear operators ranging in the cone of bounded lower semicontinuous functions,” Math. Notes, 89, No. 3-4, 519–527 (2011).

  22. G. G. Magaril-Il’yaev and V. M. Tihomirov, Convex Analysis and Its Applications [in Russian], Editorial URSS, Moscow (2003).

  23. I. V. Orlov and Z. I. Khalilova, “Compact subdifferentials in Banach cones,” Ukr. Mat. Visn., 10, No. 4, 532–558 (2013).

    MathSciNet  MATH  Google Scholar 

  24. I. V. Orlov and Z. I. Khalilova, “Compact subdifferentials in Banach spaces and their applications to variational functionals,” Sovrem. Mat. Fundam. Napravl., 49, 99–131 (2013).

    MathSciNet  MATH  Google Scholar 

  25. I. V. Orlov and F. S. Stonyakin, “Compact variation, compact subdifferentiability, and indefinite Bochner integral,” Methods Funct. Anal. Topol., 15, No. 1, 74–90 (2009).

    MathSciNet  MATH  Google Scholar 

  26. I. V. Orlov and F. S. Stonyakin, “Compact subdifferentials: the finite increment formula and related results,” J. Math. Sci. (N.Y.), 170, No. 2, 251–269 (2010).

  27. I. V. Orlov and F. S. Stonyakin, “The limit form of the Radon–Nikod´ym property is valid in any Frech´et space,” J. Math. Sci. (N.Y.), 180, No. 6, 731–747 (2012).

  28. E. S. Polovinkin, Convex Analysis: Textbook [in Russian], MIPT, Moscow (2006).

  29. E. S. Polovinkin and M.V. Balashov, Elements of Convex and Strongly Convex Analysis [in Russian], Fizmatlit, Moscow (2006).

  30. B. N. Pshenichny, Convex Analysis and Extremal Problems [in Russian], Nauka, Moscow (1980).

  31. A. Ranjbari and H. Saiflu, “Some results on the uniform boundedness theorem in locally convex cones,” Methods Funct. Anal. Topol., 15, No. 4, 361–368 (2009).

    MathSciNet  MATH  Google Scholar 

  32. Yu.G. Reshetnyak, “Extremum conditions for a class of functionals of the calculus of variations with a nonsmooth integrand,” Sibirsk. Mat. Zh., 28, No. 6, 90–101 (1987).

    MathSciNet  MATH  Google Scholar 

  33. R.T. Rockafellar, Convex Analysis [Russian translation], Mir, Moscow (1973).

  34. W. Roth, “A uniform boundedness theorem for locally convex cones,” Proc. Am. Math. Soc., 126, No. 7, 1973–1982 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  35. A.M. Rubinov, “Sublinear operators and their applications,” Usp. Mat. Nauk, 32, No. 4, 113–174 (1977).

    MathSciNet  MATH  Google Scholar 

  36. A.M. Rubinov, Superlinear Multivalued Mappings and Their Applications to Problems of Mathematical Economics [in Russian], Nauka, Leningrad (1980).

  37. F. S. Stonyakin, “An analogue of the Denjoy–Young–Saks theorem on contingency for mappings into Frech´et spaces and one of its applications in vector integration theory,” Tr. Inst. Prikl. Mat. Mekh., 20, 168–176 (2010).

    MathSciNet  MATH  Google Scholar 

  38. F. S. Stonyakin, Compact Characteristics of Maps and Their Applications to Bochner Integrals in Locally Convex Spaces, PhD Thesis, Simferopol’ (2011).

  39. V. M. Tikhomirov, “Convex analysis,” Sovrem. Probl. Mat. Fundam. Napravl., 14, 5–101 (1987).

  40. D. I. Trubetskov and A.G. Rozhnev, Linear Oscillations and Waves [in Russian], Fizmatlit, Moscow (2001).

  41. A. N. Tychonoff and A.A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Orlov.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 53, Proceedings of the Crimean Autumn Mathematical School-Symposium KROMSH-2013, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, I.V. Introduction to Sublinear Analysis. J Math Sci 218, 430–502 (2016). https://doi.org/10.1007/s10958-016-3039-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-3039-z

Navigation