Skip to main content
Log in

Limiting Curves for Polynomial Adic Systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We prove the existence of and describe limiting curves resulting from deviations in the partial sums in the ergodic theorem for cylinder functions and polynomial adic systems. For a general ergodic measure-preserving transformation and a summable function, we give a necessary condition for a limiting curve to exist. Our work generalizes results by É. Janvresse, T. de la Rue, and Y. Velenik and answers several questions from their work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Vershik, “Uniform algebraic approximations of shift and multiplication operators,” Sov. Math. Dokl., 24, No. 3, 97–100 (1981).

    MATH  Google Scholar 

  2. A. M. Vershik, “A theorem on periodical Markov approximation in ergodic theory,” J. Sov. Math., 28, 667–674 (1982).

    Article  MATH  Google Scholar 

  3. A. M. Vershik and A. N. Livshits, “Adic models of ergodic transformations, spectral theory, and related topics,” Adv. Sov. Math., 9, 185–204 (1992).

    MathSciNet  MATH  Google Scholar 

  4. A. M. Vershik, “The Pascal automorphism has a continuous spectrum,” Funct. Anal. Appl., 45, No. 3, 173–186 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. M. Vershik, “The problem of describing central measures on the path spaces of graded graphs,” Funct. Anal. Appl., 48, No. 4, 256–271 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. M. Vershik, “Several remarks on Pascal automorphism and infinite ergodic theory,” Armenian J. Math., 7, No. 2, 85–96 (2015).

    MathSciNet  MATH  Google Scholar 

  7. A. G. Kachurovskii, “The rate of convergence in ergodic theorems,” Russian Math. Surveys, 51, No. 4, 653–703 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  8. I. E. Manaev and A. R. Minabutdinov, “The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic,” J. Math. Sci., 196, No. 2, 192–198 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. R. Minabutdinov, “Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure,” J. Math. Sci., 209, No. 6, 953–978 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. R. Minabutdinov, “A higher-order asymptotic expansion of the Krawtchouk polynomials,” J. Math. Sci., 215, No. 6, 738–747 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. A. Lodkin and A. R. Minabutdinov, “Limiting curves for the Pascal adic transformation,” J. Math. Sci., 216, No. 1, 94–119 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Bailey, “Dynamical properties of some non-stationary, non-simple Bratteli–Vershik systems,” Ph.D. thesis, University of North Carolina, Chapel Hill (2006).

  13. A. Hajan, Y. Ito, and S. Kakutani, “Invariant measure and orbits of dissipative transformations,” Adv. Math., 9, No. 1, 52–65 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Halasz, “Remarks on the remainder in Birkhoff’s ergodic theorem,” Acta Math. Acad. Sci. Hungar., 28, No. 3–4, 389–395 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  15. É. Janvresse and T. de la Rue, “The Pascal adic transformation is loosely Bernoulli,” Ann. Inst. H. Poincaré Probab. Statist., 40, No. 2, 133–139 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  16. É. Janvresse, T. de la Rue, and Y. Velenik, “Self-similar corrections to the ergodic theorem for the Pascal-adic transformation,” Stoch. Dyn., 5, No. 1, 1–25 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Kakutani, “A problem of equidistribution on the unit interval [0,1],” Lect. Notes Math., 541, 369–375 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Krüppel, “De Rham’s singular function, its partial derivatives with respect to the parameter and binary digital sums,” Rostock. Math. Kolloq., 64, 57–74 (2009).

    MathSciNet  MATH  Google Scholar 

  19. X. Méla, “A class of nonstationary adic transformations,” Ann. Inst. H. Poincaré Probab. Statist., 42, No. 1, 103–123 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. X. Méla and K. Petersen, “Dynamical properties of the Pascal adic transformation,” Ergodic Theory Dynam. Systems, 25, No. 1, 227–256 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. M. Odlyzko and L. B. Richmond, “On the unimodality of high convolutions of discrete distributions,” Ann. Probab., 13, 299–306 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Takagi, “A simple example of the continuous function without derivative,” Proc. Phys.-Math. Soc., 1, 176–177 (1903).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Minabutdinov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 448, 2016, pp. 177–200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minabutdinov, A.R. Limiting Curves for Polynomial Adic Systems. J Math Sci 224, 286–303 (2017). https://doi.org/10.1007/s10958-017-3415-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3415-3

Navigation