Skip to main content
Log in

Random Deviations of Ergodic Sums for the Pascal Adic Transformation in the Case of the Lebesgue Measure

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The paper generalizes the results by É. Janvresse, T. de la Rue, and Y. Velenik on fluctuations in ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure for a wide class of functions. In particular, we answer several questions from that paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Allaart and K. Kawamura, “The Takagi function: a survey,” Real Anal. Exchange, 37, No. 1, 1–54 (2012).

    MATH  MathSciNet  Google Scholar 

  2. L. Berg and M. Krüppel, “De Rham’s singular function and related functions,” Z. Anal. Anwendungen, 19, No. 1, 227–237 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Billingsley, Probability and Measure, 3rd edition, Wiley, New York (1995).

    MATH  Google Scholar 

  4. E. de Amo, M. Diaz Carrillo, and J. Fernandez-Sanchez, “Singular functions with applications to fractal dimensions and generalized Takagi functions,” Acta Appl. Math., 119, No. 1, 129–148 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  5. M. de Amo and J. Fernandez-Sanchez, “A generalised dyadic representation system,” Int. J. Pure Appl. Math., 52, No. 1, 49–66 (2009).

    MATH  MathSciNet  Google Scholar 

  6. H. Delange, “Sur la fonction sommatoire de la fonction ‘somme des chiffres’,” Enseign. Math., 21, 31–47 (1975).

    MATH  MathSciNet  Google Scholar 

  7. G. de Rham, “Sur quelques courbes définies par des équations fonctionnelles,” Rend. Sem. Mat., 16, 101–113 (1956).

    Google Scholar 

  8. R. Girgensohn, “Nowhere differentiable solutions of a system of functional equations,” Aequationes Math., 47, No. 1, 89–99 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Girgensohn, “Digital sums and functional equations,” Integers, 12, No. 1, 141–160 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Golubov, A. Efimov, and V. Skvortsov, Walsh Series and Transforms, Kluwer, Dordrecht (1991).

    Book  MATH  Google Scholar 

  11. A. Hajan, Y. Ito, and S. Kakutani, “Invariant measure and orbits of dissipative transformations,” Adv. Math., 9, No. 1, 52–65 (1972).

    Article  Google Scholar 

  12. G. Halasz, “Remarks on the remainder in Birkhoff’s ergodic theorem,” Acta Math. Acad. Sci. Hungar., 28, Nos. 3–4, 389–395 (1976).

  13. E. Janvresse and T. de la Rue, “The Pascal adic transformation is loosely Bernoulli,” Ann. Inst. H. Poincaré Prob. Statist., 40, No. 2, 133–139 (2004).

    Article  MATH  Google Scholar 

  14. E. Janvresse, T. de la Rue, and Y. Velenik, “Self-similar corrections to the ergodic theorem for the Pascal-adic transformation,” Stoch. Dyn., 5, No. 1, 1–25 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Jukna, Extremal Combinatorics: With Applications in Computer Science, 1st edition, Springer, Berlin (2010).

    Google Scholar 

  16. S. Kakutani, “A problem of equidistribution on the unit interval [0, 1],” Lect. Notes Math., 541, 369–375 (1976).

    Article  MathSciNet  Google Scholar 

  17. K. Kawamura, “On the set of points where Lebesgue’s singular function has the derivative zero,” Proc. Japan Acad. Ser. A, 87, No. 9, 162–166 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Krüppel, “De Rham’s singular function, its partial derivatives with respect to the parameter and binary digital sums,” Rostock. Math. Kolloq., 64, 57–74 (2009).

    MATH  Google Scholar 

  19. N. R. Ladhawala, “Absolute summability of Walsh–Fourier series,” Pacific J. Math., 65, No. 1, 103–108 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  20. A. A. Lodkin, I. E. Manaev, and A. R. Minabutdinov, “Asymptotic behavior of the scaling entropy of the Pascal adic transformation,” J. Math. Sci., 174, No. 1, 28–35 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  21. A. A. Lodkin, I. E. Manaev, and A. R. Minabutdinov, “A realization of the Pascal automorphism in the concatenation graph and the sum-of-digits function s 2(n),” J. Math. Sci., 190, No. 3, 459–463 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Z. Lomnicki and S. Ulam, “Sur la théorie de la mesure dans les espaces combinatoires et son application au calcul des probabilités. I. Variables indépendantes,” Fund. Math., 23, 237–278 (1934).

    Google Scholar 

  23. X. Mela and K. Petersen, “Dynamical properties of the Pascal adic transformation,” Ergodic Theory Dynam. Systems, 25, No. 1, 227–256 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  24. I. E. Manaev and A. R. Minabutdinov, “The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic,” J. Math. Sci., 196, No. 2 (2014), 192–198.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Nogueira, E. H. El Abdalaoui, and M. Machkouri, “A criterion of weak mixing property,” in: École de Théorie Ergodique, Société Mathématique de France, Paris, Semin. Congr., 20 (2010), pp. 105–111.

  26. E. M. Rudo, “Asymptotics of distributions of random walks on multidimensional Pascal graphs and on root lattices,” J. Math. Sci., 190, No. 3, 496–502 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  27. T. Takagi, “A simple example of the continuous function without derivative,” Proc. Phys.- Math. Soc., 56, 176–177 (1903).

    Google Scholar 

  28. E. Trollope, “An explicit expression for binary digital sums,” Mat. Mag., 41, 21–25 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Volný, “Invariance principles and Gaussian approximation for strictly stationary processes,” Trans. Amer. Math. Soc., 351, No. 8, 3351–3371 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  30. A. M. Vershik, “Uniform algebraic approximations of shift and multiplication operators,” Sov. Math. Dokl., 24, No. 3, 97–100 (1981).

    MATH  MathSciNet  Google Scholar 

  31. A. M. Vershik, “A theorem on periodical Markov approximation in ergodic theory,” J. Sov. Math., 28, 667–674 (1982).

    Article  Google Scholar 

  32. A. M. Vershik, “The Pascal automorphism has a continuous spectrum,” Funct. Anal. Appl., 45, No. 3, 173–186 (2011).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Minabutdinov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 432, 2015, pp. 224–260.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minabutdinov, A.R. Random Deviations of Ergodic Sums for the Pascal Adic Transformation in the Case of the Lebesgue Measure. J Math Sci 209, 953–978 (2015). https://doi.org/10.1007/s10958-015-2540-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2540-0

Keywords

Navigation