Skip to main content
Log in

On Some Perturbations of the total variation image inpainting method. Part II: Relaxation and Dual Variational Formulation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We continue the analysis of some strongly elliptic modifications of the total variation image inpainting model formulated in the space BV(Ω) and investigate the corresponding dual variational problems. Remarkable features are the uniqueness of the dual solution and the uniqueness of the absolutely continuous part ∇a u of the gradient of BV-solutions u on the whole domain. Additionally, any BV-minimizer u automatically satisfies the inequality 0 ≤ u ≤ 1, which means that u measures the intensity of the grey level. Outside of the damaged region we even have the uniqueness of BV-solutions, whereas on the damaged domain the L 2-deviation \( {\left\Vert u-\upsilon \right\Vert}_{L^2} \) of different solutions is governed by the total variation of the singular part ∇s(uυ) of the vector measure ∇(uυ). Moreover, the dual solution is related to the BV-solutions through an equation of stress-strain type. Bibliography: 23 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bildhauer and M. Fuchs, “On some perturbations of the total variation image inpainting method. Part I: Regularity theory,” J. Math. Sci., New York 202, No. 2, 154–169 (2014).

    Article  Google Scholar 

  2. P. Arias, V. Casseles, and G. Sapiro, A Variational Framework for Non-Local Image Inpainting, IMA Preprint Series No. 2265 (2009).

  3. M. Burger, L. He, and C.-B. Schönlieb, “Cahn-Hilliard inpainting and a generalization for grayvalue images,” SIAM J. Imaging Sci. 2, No. 4, 1129–1167 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Bertalmio, V. Caselles, S. Masnou, and G. Sapiro, Inpainting. www.math.univlyon1.fr/masnou/fichiers/publications/survey.pdf

  5. T. F. Chan, S. H. Kang, and J. Shen, “Euler’s elastica and curvature based inpaintings,” SIAM J. Appl. Math. 63, No. 2, 564–592 (2002).

    MATH  MathSciNet  Google Scholar 

  6. T. F. Chan and J. Shen, “Mathematical models for local nontexture inpaintings,” SIAM J. Appl. Math. 62, No. 3, 1019–1043 (2001/02).

  7. K. Papafitsoros, B. Sengul, and C.-B. Sch¨onlieb, Combined First and Second Order Total Variation Impainting Using Split Bregman, IPOL Preprint (2012).

  8. J. Shen, Inpainting and the fundamental problem of image processing, SIAM News 36, No. 5, 1–4 (2003).

    Google Scholar 

  9. E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel (1984).

    Book  MATH  Google Scholar 

  10. L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford (2000).

    MATH  Google Scholar 

  11. M. Bildhauer, Convex Variational Problems: Linear, Nearly Linear and Anisotropic Growth Conditions, Springer, Berlin etc. (2003).

    Book  Google Scholar 

  12. M. Bildhauer and M. Fuchs, “A variational approach to the denoising of images based on different variants of the TV-regularization,” Appl. Math. Optim. 66, No. 3, 331–361 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  13. R. A. Adams, Sobolev Spaces, Academic Press, New York etc. (1975).

    MATH  Google Scholar 

  14. G. Anzellotti and M. Giaquinta, “Convex functionals and partial regularity,” Arch. Rat. Mech. Anal. 102, 243–272 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Demengel and R. Temam, “Convex functions of a measure and applications,” Ind. Univ. Math. J. 33, 673–709 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Giaquinta, G. Modica, and J. Souček, “Functionals with linear growth in the calculus of variations. I,” Commentat. Math. Univ. Carol. 20, No. 1, 143–156 (1979).

    MATH  Google Scholar 

  17. M. Giaquinta, G. Modica, and J. Souček, “Functionals with linear growth in the calculus of variations. II,” Commentat. Math. Univ. Carol. 20, No. 1, 157–172 (1979).

    MATH  Google Scholar 

  18. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin (1989).

    MATH  Google Scholar 

  19. M. Fuchs and G. Seregin, Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Springer, Berlin etc. (2000).

    Book  MATH  Google Scholar 

  20. C. Goffman and J. Serrin, “Sublinear functions of measures and variational integrals,” Duke Math. J 31, 159–178 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Beck and T. Schmidt, “On the Dirichlet problem for variational integrals in BV,” J. Reine Angew. Math. 674, 113–194 (2013).

    MATH  MathSciNet  Google Scholar 

  22. M. Bildhauer and M. Fuchs, “A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation,” Zap. Nauchn. Semin. POMI 385, 5–17 (2010).

    Google Scholar 

  23. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North Holland, Amsterdam (1976).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bildhauer.

Additional information

Translated from Problemy Matematicheskogo Analiza 77, December 2014, pp. 3-18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bildhauer, M., Fuchs, M. On Some Perturbations of the total variation image inpainting method. Part II: Relaxation and Dual Variational Formulation. J Math Sci 205, 121–140 (2015). https://doi.org/10.1007/s10958-015-2237-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2237-4

Keywords

Navigation