Skip to main content
Log in

Existence of Generalized Minimizers and Dual Solutions for a Class of Variational Problems with Linear Growth Related to Image Recovery

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We continue the analysis of modifications of the total variation image inpainting method formulated on the space BV (Ω)M and treat the case of vector-valued images where we do not impose any structure condition on the density F and the dimension of the domain Ω is arbitrary. We discuss the existence of generalized solutions of the corresponding variational problem and show the unique solvability of the associated dual variational problem. We establish the uniqueness of the absolutely continuous part ∇ a u of the gradient of BV -solutions u on the domain Ω and get the uniqueness of BV -solutions outside the damaged region D. We also prove new density results for functions of bounded variation and for Sobolev functions. Bibliography: 36 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bildhauer and M. Fuchs, “On some perturbations of the total variation image inpainting method. Part 2: Relaxation and dual variational formulation,” J. Math. Sci., New York 205 No. 2, 121–140 (2015).

    Article  Google Scholar 

  2. M. Burger, L. He, and C.-B. Schönlieb, “Cahn-Hilliard inpainting and a generalization for grayvalue images,” SIAM J. Imaging Sci. 2, No. 4, 1129–1167 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Springer, New York (2002).

    MATH  Google Scholar 

  4. T. Lehmann, W. Oberschelp, E. Pelikan, and R. Repges, Bildverarbeitung fur die Medizin: Grundlagen, Modelle, Methoden, Anwendungen, Springer, Berlin (1997).

  5. T. Lehmann, C. Gönner, and K. Spitzer, “Survey: Interpolation methods in medical imaging processing,” IEEE Trans. Medical Imaging 18, No. 11, 1049–1075 (1999).

    Article  Google Scholar 

  6. P. Blomgren, T.F. Chan, Color TV: Total variation methods for restoration of vector-valued images, IEEE Trans. Medical Imaging 7, No. 3, 304–309 (1998).

    Google Scholar 

  7. K. Papafitsoros, B. Sengul, and C.-B. Schnlieb, Combined First and Second Order Total Variation Inpainting Using Split Bregman, IPOL Preprint (2012).

  8. J. Shen, Inpainting and the fundamental problem of image processing, SIAM News 36, No. 5, 1–4 (2003).

  9. P. Arias, V. Caselles, G. Facciolo, V. Lazcano, and R. Sadek, “Nonlocal variational models for inpainting and interpolation,” Math. Models Methods Appl. Sci. 22, No. Suppl. 2 (2012).

  10. M. Bertalmio, G. Sapiro, V, Caselles, and C. Ballester, “Image inpainting,” In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417– 424, ACM Press/Addison-Wesley Publishing Co. (2000).

  11. T. F. Chan, S. H. Kang, and J. Shen, “Euler’s elastica and curvature based inpaintings,” SIAM J. Appl. Math. 63, No. 2, 564–592 (2002).

    MATH  MathSciNet  Google Scholar 

  12. T.F. Chan and J. Shen, “Nontexture inpainting by curvature-driven diffusions,” J. Visual Commun. Image Represen. 12, No. 4, 436–449 (2001).

    Article  Google Scholar 

  13. T. F. Chan and J. Shen, “Mathematical models for local nontexture inpaintings,” SIAM J. Appl. Math. 62, No. 3, 1019–1043 (2001/02).

  14. S. Esedoglu and J. Shen, “Digital inpainting based on the Mumford-Shah-Euler image model,” European J. Appl. Math. 13, No. 4, 353–370 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Bildhauer and M. Fuchs, “On some perturbations of the total variation image inpainting method. Part I: Regularity theory,” J. Math. Sci., New York 202, No. 2, 154–169 (2014).

    Article  MATH  Google Scholar 

  16. M. Bildhauer and M. Fuchs, “On some perturbations of the total variation image inpainting method. Part III: Minimization among sets with finite perimeter,” J. Math. Sci., New York 207, No. 2, 142–146 (2015).

    Article  Google Scholar 

  17. M. Bildhauer and M. Fuchs, “Image inpainting with energies of linear growth. A collection of proposals,” J. Math. Sci., New York 196, No. 4, 490–497 (2014).

    Article  MATH  Google Scholar 

  18. M. Bildhauer, M. Fuchs, and C. Tietz, “On a class of variational problems with linear growth related to image inpainting,” Algebra Anal. [To appear]

  19. P. Arias, V. Casseles, and G. Sapiro, “A variational framework for nonlocal image inpainting,” In: Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 345–358, Springer (2009).

  20. L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford (2000).

    MATH  Google Scholar 

  21. E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel (1984).

    Book  MATH  Google Scholar 

  22. R. A. Adams, Sobolev Spaces, Academic Press, New York etc. (1975).

    MATH  Google Scholar 

  23. G. Anzellotti and M. Giaquinta, “Convex functionals and partial regularity,” Arch. Rat. Mech. Anal. 102, 243–272 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  24. F. Demengel and R. Temam, “Convex functions of a measure and applications,” Indiana Univ. Math. J. 33, 673–709 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Giaquinta, G. Modica, and J. Souček, “Functionals with linear growth in the calculus of variations. I,” Commentat. Math. Univ. Carol. 20, No. 1, 143–156 (1979).

    MATH  Google Scholar 

  26. M. Bildhauer and M. Fuchs, “A variational approach to the denoising of images based on different variants of the TV-regularization,” Appl. Math. Optim. 66, No. 3, 331–361 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Fuchs and G. Seregin, Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Springer, Berlin etc. (2000).

    Book  MATH  Google Scholar 

  28. M. Bildhauer, Convex Variational Problems: Linear, Nearly Linear and Anisotropic Growth Conditions, Lect. Notes Math. 1818, Springer, Berlin etc. (2003).

  29. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North Holland, Amsterdam (1976).

    MATH  Google Scholar 

  30. C. Tietz, C1,α-Interior Regularity for Minimizers of a Class of Variational Problems with Linear Growth Related to Image Inpainting in Higher Dimensions, Preprint No. 356, Saarland University (2015).

  31. M. Giaquinta, G. Modica, and J. Souček, Cartesian Currents in the Calculus of Variations II Springer, Berlin etc. (1998).

  32. J. Malý and W. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, Am. Math. Soc., Providence, RI (1997).

  33. H. W. Alt, Lineare Funktionalanalysis, Springer, Berlin etc. (1985).

    Book  MATH  Google Scholar 

  34. M. Meier, Reguläre und singuläre Lösungen quasilinearer elliptischer Gleichungen und Systeme I,II, Preprint Bonn University/ SFB 72 No. 245, 246, (1979).

  35. M. Bildhauer and M. Fuchs, “Partial regularity for a class of anisotropic variational integrals with convex hull property, ” Asymp. Anal. 32, 293–315 (2002).

    MATH  MathSciNet  Google Scholar 

  36. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin (1989).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fuchs.

Additional information

Translated from Problemy Matematicheskogo Analiza 81, August 2015, pp. 107–120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, M., Tietz, C. Existence of Generalized Minimizers and Dual Solutions for a Class of Variational Problems with Linear Growth Related to Image Recovery. J Math Sci 210, 458–475 (2015). https://doi.org/10.1007/s10958-015-2575-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2575-2

Keywords

Navigation