Skip to main content
Log in

Measures and Dirichlet Forms Under the Gelfand Transform

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Using the standard tools of Daniell–Stone integrals, Stone–Čech compactification, and Gelfand transform, we show explicitly that any closed Dirichlet form defined on a measurable space can be transformed into a regular Dirichlet form on a locally compact space. This implies existence, on the Stone–Čech compactification, of the associated Hunt process. As an application, we show that for any separable resistance form in the sense of Kigami there exists an associated Markov process. Bibliography: 29 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, Z.-M. Ma, and M. Röckner, “A Beurling–Deny type structure theorem for Dirichlet forms on general state spaces,” in: S. Albeverio, J. E. Fenstad, H. Holden, and T. Lindstrom (eds.), Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, Cambridge Univ. Press, Cambridge (1992), pp. 115–123.

    Google Scholar 

  2. S. Albeverio and M. Röckner, “Classical Dirichlet forms on topological vector spaces – construction of an associated diffusion process,” Probab. Th. Rel. Fields, 83, 405–434 (1989).

    Article  MATH  Google Scholar 

  3. S. Albeverio and M. Röckner, “Classical Dirichlet forms on topological vector spaces – closability and a Cameron–Martin formula,” J. Funct. Anal., 88, 395–436 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Allain, “Sur la représentation des formes de Dirichlet,” Ann. Inst. Fourier, 25, 1–10 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Arveson, An Invitation to C*-Algebras, Springer Graduate Texts Math., 39, Springer, New York (1976).

    MATH  Google Scholar 

  6. A. Beurling and J. Deny, “Espaces de Dirichlet. I, le cas élémentaire,” Acta Math., 99, 203–224 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Blackadar, Operator Algebras: Theory of C*-Algebras and von Neumann Algebras, Encyclopedia Math. Sciences, 122, Springer, New York (2006).

    Google Scholar 

  8. N. Bouleau and F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, De Gruyter Studies Math., 14, De Gruyter, Berlin (1991).

    Book  MATH  Google Scholar 

  9. J. Deny, Méthodes Hilbertiennes et Théorie du Potentiel, CIME, Rome (1970).

    Google Scholar 

  10. E. B. Dynkin, Foundations of the Theory of Markov Processes [in Russian], Moscow (1959).

  11. E. B. Dynkin, Markov Processes [in Russian], Moscow (1963).

  12. R. M. Dudley, Real Analysis and Probability, Cambridge Studies Adv. Math., 74, Cambridge Univ. Press, Cambridge (2002).

    Book  MATH  Google Scholar 

  13. P. J. Fitzsimmons, “Markov processes and nonsymmetric Dirichlet forms without regularity,” J. Funct. Anal., 85, 287–306 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter, Berlin, New York (1994).

    Book  MATH  Google Scholar 

  15. B. Fuchssteiner, “When does the Riesz representation theorem hold?” Arch. Math., 28, 173–181 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  16. L. Gross, “Potential theory on Hilbert space,” J. Funct. Anal., 1, 123–181 (1967).

    Article  MATH  Google Scholar 

  17. L. Gross, Abstract Wiener spaces, in: Proc. Fifth Berkeley Sympos. Math. Statist. Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. California Press, Berkeley, CA (1967), pp. 31–42

    Google Scholar 

  18. I. A. Ibragimov and Yu. A. Rozanov, Gaussian Random Processes [in Russian], Moscow (1970).

  19. E. Kaniuth, A Course in Commutative Banach Algebras, Springer, New York (2009).

    Book  MATH  Google Scholar 

  20. J. Kigami, Analysis on Fractals, Cambridge Tracts Mathematics, 143, Cambridge Univ. Press (2001).

  21. J. Kigami, “Harmonic analysis for resistance forms,” J. Funct. Anal., 204, 525–544 (2003).

    Article  MathSciNet  Google Scholar 

  22. J. Kigami, “Resistance forms, quasisymmetric maps and heat kernel estimates,” Mem. Amer. Math. Soc., 216 (2012).

  23. A. A. Kirillov, A Tale of Two Fractals [in Russian] (2010).

  24. Y. LeJan, “Mesures associées à une forme de Dirichlet. Applications,” Bull. Soc. Math. France, 106, 61–112 (1978).

    MATH  MathSciNet  Google Scholar 

  25. Z.-M. Ma and M. Röckner, Introduction to the Theory of Nonsymmetric Dirichlet Forms, Universitext, Springer, Berlin (1992).

    Book  Google Scholar 

  26. M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press (1980).

  27. L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales. Vol. I, Foundations, 2nd ed., Wiley (1994).

  28. R. S. Strichartz, Differential Equations on Fractals: a Tutorial, Princeton Univ. Press (2006).

  29. V. N. Sudakov, “Geometric problems of the theory of infinite-dimensional probability distributions,” Trudy Mat. Inst. AN SSSR, 141, 191 (1976).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hinz.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 408, 2012, pp. 303–322.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinz, M., Kelleher, D. & Teplyaev, A. Measures and Dirichlet Forms Under the Gelfand Transform. J Math Sci 199, 236–246 (2014). https://doi.org/10.1007/s10958-014-1851-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1851-x

Keywords

Navigation