Boundary Identification for Admissible Variation of External and Internal Factors Affecting Robustness of Fiber-Optic Communication Systems on Rail Transport*

The paper focuses on the description of the problem of modeling equipment failures by means of non-homogeneous flows of extremal events with the help of max-generalized Cox processes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    B. A. Kozlov and I. A. Ushakov, Handbook of Reliability Computation, Sovietskoje Radio, Moscow (1966).

    Google Scholar 

  2. 2.

    R. E. Barlow and F. Proshan, Mathematical Theory of Reliability, Wiley, New York (1965).

    MATH  Google Scholar 

  3. 3.

    E. J. Gumbel, Statistics of Extremes, Columbia Univ. Press, New York (1965).

    MATH  Google Scholar 

  4. 4.

    V. G. Voinov and M. S. Nikulin, Unbiased Estimators and Their Applications, Vol.1, 2, Kluwer, Dordrecht (1993, 1996).

  5. 5.

    V. E. Bening and V. Yu. Korolev, Generalized Poisson Models, VSP, Utrecht (2001).

    Google Scholar 

  6. 6.

    S. M. Berman, “Limit theorems for the maximum term in stationary sequences,” Ann. Math. Stat., 35, 502–516 (1964).

    MATH  Article  Google Scholar 

  7. 7.

    O. Barndorff-Nielsen, “On the limit distribution of the maximum of a random number of independent random variables,” Acta Math. Acad. Sci. Hungar., 15, 399–403 (1964).

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    J. Mogyorodi, On the limit distribution of the largest term in the order statistics of a sample of random size,” Magyar Tud. Akad. Mat. Fiz. Oszt. Kozl., 17, 75–83 (1967).

    MathSciNet  MATH  Google Scholar 

  9. 9.

    B. V. Gnedenko and L. S. Bereksi, “On one characteristic of the limit distributions for the maximum and minimum of variational series,” Dokl. Akad. Nauk SSSR, 267, No.5 (1982).

    Google Scholar 

  10. 10.

    B. V. Gnedenko and L. S. Bereksi, “On one characteristic of logistic distribution,” Dokl. Akad. Nauk SSSR, 267, No.6, 18–20 (1982).

    MathSciNet  Google Scholar 

  11. 11.

    L. S. Bereksi and S. Yanitch, “Two theorems on the sequence of maxima of independent random variables,” Lith. Math. J., 24, No.1, 167–174 (1984).

    Article  Google Scholar 

  12. 12.

    J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Wiley, New York (1978).

    MATH  Google Scholar 

  13. 13.

    B. V. Gnedenko and D. B. Gnedenko, “On Laplace and logistical distributions as limit ones in the probability theory,” Serdika, Bulgar. Math. J., 8, No.2, 229–234 (1982).

    MathSciNet  MATH  Google Scholar 

  14. 14.

    R. Mises, “La distribution de la plus grande de n valeurs,” in: Revue Math. de l’Union Interbalkanique, Vol.1, Athens (1936), p. 1.

  15. 15.

    A. F. Jenkinson, “The frequency distribution of the annual maximum (or minimum) values of meteorological elements,” Quart. J. Roy. Meteor. Soc., 87, 158 (1955).

    Article  Google Scholar 

  16. 16.

    J. Grandell, “Doubly Stochastic Poisson Processes,” in: Lecture Notes in Mathematics, Vol.529, Springer (1976).

  17. 17.

    V. E. Bening, V. Yu. Korolev, and S. Ya. Shorgin, “On approximations to generalized Poisson processes,” J. Math. Sci., 83, No.3, 360–373 (1997).

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    J. Grandell, Mixed Poisson Processes, Chapman & Hall, London (1997).

    MATH  Google Scholar 

  19. 19.

    B. V. Gnedenko and V. Yu. Korolev, Random Summation: Limit Theorems and Applications, CRC Press, Boca Raton (1996).

    MATH  Google Scholar 

  20. 20.

    R. R. Bush and F. Mosteller, Stochastic Models for Learning, John Wiley & Sons, Inc. (1955).

    MATH  Google Scholar 

  21. 21.

    L. I. Volkov and A. M. Shishkevich, The Reliability of Flight Vehicles (Russian book on remotely piloted vehicles), Izd. Vysshaia Shkola, Moscow (1975).

    Google Scholar 

  22. 22.

    L. I. Volkov, Control of the Operation of Flight Complexes, Izd. Vysshaia Shkola, Moscow (1981).

    Google Scholar 

  23. 23.

    V. Yu. Korolev, Applied Problems of Probability Theory: Models of Reliability Growth of Modifiable Systems, Dialogue–MSU, Moscow (1997).

    Google Scholar 

  24. 24.

    I. A. Zdorovtsov, Method of estimation of reliability, VOLP MCSS.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Korolev.

Additional information

*Research supported by the Russian Foundation for Basic Research, projects No. 00–01–00657, 02–01–00949 and 02–01–01080.

Translated from Statisticheskie Metody Otsenivaniya i Proverki Gipotez, Vol. 16, pp. 132–150, 2002.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zdorovtsov, I.A., Korolev, V.Y., Surkov, A.G. et al. Boundary Identification for Admissible Variation of External and Internal Factors Affecting Robustness of Fiber-Optic Communication Systems on Rail Transport*. J Math Sci 189, 940–949 (2013). https://doi.org/10.1007/s10958-013-1235-7

Download citation

Keywords

  • Limit Distribution
  • Rail Transport
  • Homogeneous Poisson Process
  • Admissible Variation
  • Transference Theorem