Skip to main content
Log in

To the theory of variational method for Beltrami equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We have constructed variations for classes of regular solutions of the degenerate Beltrami equation with constraints of the set-theoretic and integral types for the complex coefficient and, on this basis, proved the variational principles of maximum and other necessary conditions of extremum. Some applications to equations of mathematical physics are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand-Reinhold, Princeton, NJ, 1966. 1969.

    MATH  Google Scholar 

  2. L. Ahlfors and L. Bers, “Riemann’s mapping theorem for variable metrics,” Ann. Math., 72, 385–404 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  3. P. P. Belinskii, General Properties of Quasiconformal Mappings [in Russian], Nauka, Novosibirsk, 1974.

    Google Scholar 

  4. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On the Beltrami equations with two characteristics,” Complex Var. Ellipt. Eq., 54, No. 10, 935–950 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On integral conditions for general Beltrami equations,” Complex Anal. Oper. Theory, 5, No. 3, 835–845 (2011).

    Article  MathSciNet  Google Scholar 

  6. N. Bourbaki, Integration, Springer, Berlin, 2004.

    Google Scholar 

  7. G. David, “Solutions de l’equation de Beltrami avec ‖μ  = 1,” Ann. Acad. Sci. Fenn., Ser. A1. Math., 13, 25–70 (1988).

    MATH  Google Scholar 

  8. H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.

    MATH  Google Scholar 

  9. G. M. Fikhtengol’ts, Course of Differential and Integral Calculus [in Russian], Vol. 1, Nauka, Moscow, 1970.

    Google Scholar 

  10. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, RI, 1969.

    MATH  Google Scholar 

  11. V. M. Gol’dshtein and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings [in Russian], Nauka, Moscow, 1983.

    Google Scholar 

  12. V. Ya. Gutlyanskii, “On the method of variations for schlicht analytic functions with a quasiconformal continuation,” Dokl. AN SSSR, 236, No. 5, 1045–1048 (1977).

    Google Scholar 

  13. V. Ya. Gutlyanskii, “On the product of conformal radii of nonoverlapping domains,” Dokl. AN Ukr. SSR, Ser. A, No. 4, 298–302 (1977).

  14. V. Ya. Gutlyanskii, “On the method of variations for schlicht analytic functions with a quasiconformal continuation,” Sib. Mat. Zh., 21, No. 2, 61–78 (1980).

    MathSciNet  Google Scholar 

  15. V. Ya. Gutlyanskii, “The product of the conformal radii of nonoverlapping domains,” Amer. Math. Soc. Transl., Ser. 2, 122, 65–69 (1984).

    Google Scholar 

  16. V. Ya. Gutlyanskii and V. I. Ryazanov, “To the theory of a local behavior of quasiconformal mappings,” Izv. RAN, Ser. Mat., 59, No. 3, 31–58 (1995).

    MathSciNet  Google Scholar 

  17. V. Ya. Gutlyanskii and V. I. Ryazanov, “On the fundamental solution of an equation of mathematical physics,” in Complex Methods in Mathematical Physics, Abstr. of Reports, All-Union School of Young Scientists [in Russian], IM AN SSSR, IPMM AN Ukr. SSR, DGY, Donetsk, 1984.

  18. V. Ya. Gutlyanskii and V. I. Ryazanov, The Geometrical and Topological Theory of Functions and Mappings [in Russian], Naukova Dumka, Kiev, 2011.

    Google Scholar 

  19. V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, “On recent advances in the Beltrami equations,” Ukr. Mat. Vesn., 7, No. 4, 467–515 (2010).

    Google Scholar 

  20. S. Hencl and P. Koskela, “Regularity of the inverse of a planar Sobolev homeomorphism,” Arch. Rat. Mech. Anal., 180, No. 1, 75–95 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. L. Krushkal, Quasiconformal Mappings and Riemann Surfaces, Wiley, New York, 1979.

    MATH  Google Scholar 

  22. P.-J. Laurent, Approximation et Optimisation, Hermann, Paris, 1972.

    MATH  Google Scholar 

  23. O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York, 1973.

    MATH  Google Scholar 

  24. T. V. Lomako, “To the theory of convergence and compactness for Beltrami equations,” Ukr. Mat. Zh., 63, No. 3, 341–349 (2011).

    Article  Google Scholar 

  25. T. V. Lomako, “To the theory of convergence and compactness for Beltrami equations with constraints of the set-theoretic type,” Ukr. Mat. Zh., 63, No. 9, 1227–1240 (2011).

    Google Scholar 

  26. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York, 2009.

    MATH  Google Scholar 

  27. D. Menchoff, “Sur les differentielles totales des fonctions univalentes,” Math. Ann., 105, 75–85 (1931).

    Article  MathSciNet  Google Scholar 

  28. S. P. Ponomarev, “N −1-property of mappings and the Luzin’s (N)-condition,” Mat. Zam., 58, 411–418 (1995).

    MathSciNet  Google Scholar 

  29. W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.

    MATH  Google Scholar 

  30. V. I. Ryazanov, “Some questions of convergence and compactness for quasiconformal mappings,” in Theory of Mappings and Approximation of Functions [in Russian], edited by G. D. Suvorov, Naukova Dumka, Kiev, 1983, pp. 50–62.

  31. V. I. Ryazanov, “Some questions of convergence and compactness for quasiconformal mappings,” Amer. Math. Soc. Transl., 131, No. 2, 7–19 (1986).

    MathSciNet  Google Scholar 

  32. V. I. Ryazanov, Topological Aspects of the Theory of Quasiconformal Mappings [in Russian], Dissertation on Doctoral Degree (Phys.-Math. Sci.) IPMM NANU, Donetsk, 1993.

  33. V. Ryazanov, U. Srebro, and E. Yakubov, “On strong solutions of the Beltrami equations,” Complex Var. Ellipt. Eq., 55, No. 1–3, 219–236 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Saks, Theory of the Integral, New York, Dover, 2005.

    Google Scholar 

  35. M. Schiffer and G. Schober, “A variational method for general families of quasiconformal mappings,” J. Anal. Math., 34, 240–264 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Schober, Univalent Functions, Lect. Notes Math., 478, Springer, Berlin, 1975.

    MATH  Google Scholar 

  37. A. Ukhlov, “Mappings generating the embeddings of Sobolev spaces,” Sib. Mat. Zh., 34, No. 1, 165–171 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  38. S. K. Vodopyanov and A. Ukhlov, “Sobolev spaces and (P, Q)-quasiconformal mappings of Carnot groups,” Sib. Mat. Zh., 39, No. 4, 665–682 (1998).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Ya. Gutlyanskiĭ.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 8, No. 4, pp. 513–536, October–November, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutlyanskiĭ, V.Y., Lomako, T.V. & Ryazanov, V.I. To the theory of variational method for Beltrami equations. J Math Sci 182, 37–54 (2012). https://doi.org/10.1007/s10958-012-0727-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0727-1

Keywords

Navigation