Skip to main content
Log in

A Survey on dynamical transport distances

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

In this paper, we review some transport models based on the continuity equation, starting with the so-called Benamou − Brenier formula, which is nothing but a fluid mechanics reformulation of the Monge − Kantorovich problem with cost c(x, y) = |x − y|2. We discuss some of its applications (gradient flows, sharp functional inequalities, etc.), as well as some variants and generalizations to dynamical transport problems, where interaction effects among mass particles are considered. Bibliography: 43 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Agueh, N. Ghoussoub, and X. Kang, “Geometric inequalities via a general comparison principle for interacting gases,” Geom. Funct. Anal., 14, 215-244 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Birkhäuser Verlag, Basel (2008).

    MATH  Google Scholar 

  3. F. Andreu, V. Caselles, and J. M. Mazón, “Some regularity results on the ‘relativistic” heat equation,” J. Differential Equations, 245, 3639-3663 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Beckner, “Geometric proof of Nash’s inequality,” Int. Math. Res. Not., 1998, No. 2, 67-71 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  5. J.-D. Benamou and Y. Brenier, “A computational fluid mechanics solution to the Monge-Kant0r0vich mass transfer problem,” Numer. Math., 84, 375-393 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Bernot, V. Caselles, and J.-M. Morel, “Traffic plans,” Publ. Mat., 49, 417-451 (2005).

    MathSciNet  MATH  Google Scholar 

  7. M. Bernot, V. Caselles, and J.-M. Morel, “The structure of branched transportation networks,” Calc. Var. Partial Dijferential Equations, 2, 279-317 (2008).

    Article  MathSciNet  Google Scholar 

  8. M. Bernot, V. Caselles, and J.-M. Morel, Optimal Transportation Networks. Models and Theory, Lect. Notes Math., 1955, Springer-Verlag, Berlin (2009).

    MATH  Google Scholar 

  9. M. Bernot and A. Figalli, “Synchronized traffic plans and stability of optima,” ESAIM Control Optim. Calc. Var., 14, 864-878 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Bouehitté and G. Buttazzo, “New lower semicontinuity results for nonconvex functionals defined on measures,” Nonlinear Anal., 15, 679-692 (1990).

    Article  MathSciNet  Google Scholar 

  11. Y. Brenier, “Extended Monge-Kantorovich theory,” in: Optimal Transportation and Applications, Lect. Notes Math., 1813, Springer, Berlin (2003), pp. 91-121.

    Chapter  Google Scholar 

  12. A. Brancolini, G. Buttazzo, and F. Santambrogio, “Path functionals over Wasserstein spaces,” J. Eur. Math. Soc., 8, 415-434 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Brasco, G. Buttazzo, and F. Santambrogio, “A Benamou-Brenier approach to branched transport,” SIAM J. Math. Anal., 43, 1023-1040 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Brasco and F. Santambrogio, “An equivalent path functional formulation of branched transportation problems,” Discrete Contin. Dyn. Syst., 29, 845-871 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Longman Scientific & Technical, Harlow (1989).

    MATH  Google Scholar 

  16. G. Buttazzo, C. Jimenez, and E. Oudet, “An optimization problem for mass transportation with congested dynamics,” SIAM J. Control Optim., 48, 1961-1976 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. A. Carrillo, S. Lisini, G. Savaré, and D. Slepcĕv, “Nonlinear mobility continuity equations and generalized displacement convexity,” J. Funct. Anal., 258, 1273-1309 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Cordero-Erausquin, B. Nazaret, and C. Villani, “A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities,” Adv. Math., 182, 307-332 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Dellacherie and P.-A. Meyer, Probabilités et potentiel, Chapitres I à IV, Hermann, Paris (1975).

    MATH  Google Scholar 

  20. M. Del Pino and J. Dolbeault, “Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions,” J. Math. Pures Appl., 81, 847-875 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Dolbeault, B. Nazaret, and G. Savare, “A new class of transport distances between measures,” Calc. Var. Partial Differential Equations, 34, 193-231 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  22. E. N. Gilbert, “Minimum cost communication networks,” Bell System Tech. J., 46, 2209-2227 (1967).

    Google Scholar 

  23. L. Gross, “Logarithmic Sobolev inequalities,” Amer. J. Math., 97, 1061-1083 (1975).

    Article  MathSciNet  Google Scholar 

  24. T. Hillen and K. J. Painter, “A user’s guide to PDE models for chemotaxis,” J. Math. Biol., 58, 183-217 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Jordan, D. Kinderlehrer, and F. Otto, “The variational formulation of the Fokker Planck equation,” SIAM J. Math. Anal., 29, 1-17 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  26. J. M. Lasry and P.-L. Lions, “Mean field games,” Japan J. Math., 2, 229-260 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Lisini, “Characterization of absolutely continuous curves in Wasserstein spaces,” Calc. Var. Partial Differential Equations, 28, 85-120 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Lisini and A. Marigonda, “On a class of modified Wasserstein distances induced by concave mobility functions defined on bounded intervals,” Manuscripta Math., 133, 197-224 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Maddalena, J. M. Morel, and S. Solimini, “A variational model of irrigation patterns,” Interfaces Free Bound., 5, 391-415 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Maggi and C. Villani, “Balls have the worst best Sobolev inequalities. II. Variants and extensions,” Calc. Var. Partial Differential Equations, 31, 47-74 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Maggi and C. Villani, “Balls have the worst best Sobolev inequalities,” J. Geom. Anal., 15, 83-121 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  32. R. McCann, “A convexity principle for interacting gases,” Adv. Math., 128, 153-179 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  33. R. McCann and M. Puel, “Constructing a relativistic heat flow by transport time steps,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 2539-2580 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  34. J.-M. Morel and F. Santambrogio, “Comparison of distances between measures,” Appl. Math. Lett., 20, 427-432 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Nazaret. “Best constant in Sobolev trace inequalities on the half space,” Nonlinear Anal., 65, 1977-1985 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  36. F. Otto, “The geometry of dissipative evolution equation: the porous medium equation,” Comm. Partial Differential Equations, 26, 101-174 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Otto, “Dynamics of labyrinthine pattern formation in magnetic fluids: a mean—field theory,” Arch. Rational Mech. Anal., 141, 63-103 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Otto and C. Villani, “Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,” J. Funct. Anal., 173, 361-400 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Paolini and E. Stepanov, “Optimal transportation networks as flat chains,” Interfaces Free Bound., 8, 393-436 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  40. G. Talenti, “Best constant in Sobolev inequality,” Ann. Mat. Pura Appl., 110, 353-372 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  41. C. Villani, Optimal Transport. Old and New, Springer-Verlag, Berlin (2009).

    Book  MATH  Google Scholar 

  42. C. Villani, “Optimal transportation, dissipative PDE’s and functional inequalities,” in: Optimal Transportation and Applications, Lect. Notes Math., 1813, Springer, Berlin (2003), pp. 53-89.

    Chapter  Google Scholar 

  43. Q. Xia, “Optimal paths related to transport problems,” Commun. Contemp. Math., 5, 251-279 (2003).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Brasco.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 390, 2011, pp. 5 − 51.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brasco, L. A Survey on dynamical transport distances. J Math Sci 181, 755–781 (2012). https://doi.org/10.1007/s10958-012-0713-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0713-7

Keywords

Navigation