Skip to main content
Log in

Mathematical modeling of fractional reaction-diffusion systems with different order time derivatives

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The linear stability analysis is studied for a two-component fractional reaction-diffusion system with different derivative indices. Two different cases are considered: when the activator index is larger than the inhibitor one and when the inhibitor variable index is larger than the activator one. The general analysis is confirmed by computer simulation of the system with cubic nonlinearity. It is shown that systems with a higher activator variable index lead to a much more complicated space-time dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Gafiychuk, B. Y. Datsko, and Yu. Yu. Izmajlova, “Analysis of dissipative structures in diffusion systems with fractional derivatives,” Mat. Met. Fiz.-Mekh. Polya, 49, No. 4, 62–68 (2006).

    Google Scholar 

  2. A. Adamatzky, B. De Lacy Costello, and T. Asai, Reaction-Diffusion Computers, Elsevier (2005)

  3. V. Gafiychuk and B. Datsko, “Inhomogeneous oscillatory structures in fractional reaction-diffusion systems,” Phys. Lett. A, 372, No. 5, 619–622 (2008).

    Article  Google Scholar 

  4. V. Gafiychuk and B. Datsko, “Pattern formation in a fractional reaction-diffusion system,” Phys. A, 365, 300–306 (2006).

    Article  Google Scholar 

  5. V. Gafiychuk and B. Datsko, “Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems,” Phys. Rev. E, 75, 055201-1-4 (2007).

    Article  Google Scholar 

  6. V. Gafiychuk, B. Datsko, and V. Meleshko, “Analysis of fractional of fractional order Bonhoeffer-van der Pol oscillator,” Phys. A, 387, No. 2–3, 418–424 (2008).

    Google Scholar 

  7. V. Gafiychuk, B. Datsko, and V. Meleshko, Mathematical Modeling of Pattern Formation in Sub- and Supperdiffusive Reaction-Diffusion Systems, nlin. AO/0611005.

  8. V. Gafiychuk, B. Datsko, and V. Meleshko, Nonlinear Oscillations and Stability Domains in Fractional Reaction-Diffusion Systems, arXiv:nlin/0702013.

  9. V. V. Gafiychuk and B. Y. Datsko, “New type of instability in fractional reaction-diffusion systems,” Mat. Met. Fiz.-Mekh. Polya, 50, No. 1, 64–70 (2007).

    MATH  MathSciNet  Google Scholar 

  10. B. I. Henry, T. A. M. Langlands, and S. L. Wearne, “Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations,” Phys. Rev. E, 74, 031116 (2006).

    Article  MathSciNet  Google Scholar 

  11. B. I. Henry, T. A. M. Langlands, and S. L. Wearne, “Turing pattern formation in fractional activator-inhibitor systems,” Phys. Rev. E, 72, 026101 (2005).

    Article  MathSciNet  Google Scholar 

  12. A. Iomin, “Toy model of fractional transport of cancer cells due to self-entrapping,” Phys. Rev. E, 73, 061918 (2006).

    Article  Google Scholar 

  13. B. S. Kerner and V. V. Osipov, Autosolitons, Kluwer, Dordrecht (1994).

    Google Scholar 

  14. T. Kosztolowicz, K. Dworecki, and S. Mrwczyski, “How to measure subdiffusion parameters,” Phys. Rev. Lett., 94, 170602 (2005).

    Article  Google Scholar 

  15. T. A. M. Langlands, B. I. Henry, and S. L. Wearne, “Anomalous subdiffusion with multispecies linear reaction dynamics,” Phys. Rev. E, 77, 021111 (2008).

    Article  MathSciNet  Google Scholar 

  16. I. Petras, A note on the Fractional Order Chua’s System. Chaos, Solitons and Fractals, doi:10.1016/j.chaos.2006.10.054 (Av. onl. 12 Dec. 2006).

  17. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).

    MATH  Google Scholar 

  18. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Newark (1993).

    MATH  Google Scholar 

  19. V. V. Uchaikin and R. T. Sibatov, “Fractional theory for transport in disordered semiconductors,” Commun. Nonlin. Sci. Numer. Simul., 13, No. 4, 715–727 (2008).

    Article  MathSciNet  Google Scholar 

  20. F. J. Valdes-Parad, J. A. Ochoa-Tapia, and J. Alvarez-Ramirez, “Effective medium equation for fractional Cattaneo’s diffusion and heterogeneous reaction in disordered porous media,” Phys. A: Stat. Mech. Its Appl., 369, No. 2, 318–328 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 51, No. 3, pp. 193–201, July–September, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datsko, B.Y., Gafiychuk, V.V. Mathematical modeling of fractional reaction-diffusion systems with different order time derivatives. J Math Sci 165, 392–402 (2010). https://doi.org/10.1007/s10958-010-9807-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-9807-2

Keywords

Navigation